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A metamodel has been defined as: a model of a model; a definition of a language; 
a description of abstract syntax; and a description of a domain. Because of these varied 
definitions, it is difficult to explain why metamodels are constructed, what can be done 
with them, and how they are built. This tutorial introduces the key concepts, terminology 
and philosophy behind metamodelling, focusing on its use for language engineering, and 
expressed in a way that is intended to be accessible to researchers who may be more 
familiar with the use of traditional context-free grammar techniques. We highlight the 
main differences between metamodelling and grammar-based approaches, describe how to 
map metamodelling concepts and techniques to grammar concepts and techniques, and 
highlight some of the strengths and weaknesses of metamodelling via a set of small, but 
realistic examples.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Grammarware is the collection of grammars and grammar-aware theories and software [23]. The definition is very broad, 
and includes context-free grammars, graph grammars, XML schemas, class dictionaries and other techniques. In this paper, 
we restrict our focus to a subset of grammarware techniques – those that exploit context-free grammars (e.g., Backus–Naur 
Form, traditional parsing and semantic analysis techniques); these should be familiar to a significant number of readers Mod-
elware, by contrast, is the collection of models, metamodels, model-aware theories and software systems. At the heart of 
modelware – influencing its theories, practices, tools and applications – is metamodelling. This paper provides an introduc-
tion to metamodelling for grammar researchers, focusing on traditional grammar technologies like context-free grammars 
and parsers. Our specific focus is on how metamodelling is used for language engineering, e.g., for implementing editors and 
analysis tools for domain-specific languages, general-purpose languages, etc. We assume that such researchers are comfort-
able and experienced with defining and implementing grammars (e.g., using Extended Backus–Naur Form (EBNF)), parser 
generator tools, and grammar-based manipulation of languages (e.g., for compilation, analysis, extraction and comparison); 
advanced grammar-based techniques (such as graph grammars and attribute grammars) are out of scope for comparison 
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and consideration in this paper. We also assume that these researchers have little or no experience with metamodelling, 
but are interested in the terminology relevant to metamodelling, how metamodelling is done, and what can be done with 
metamodels. Such researchers may be motivated to find ways to explain their research to modellers, and may seek to better 
understand modelling research.

The entry barrier to metamodelling can be high, not least because of the cumbersome terminology, and an absence of 
standard definitions. In this tutorial, we aim to lower the entry barrier to metamodelling, by building on essential knowledge 
of grammars.

We start the tutorial in Section 2 with some basic definitions, illustrated with very small examples of metamodels, 
constructed in different languages, that will hopefully be accessible and reasonably familiar to grammar researchers. In 
Section 3 we discuss the different motivations that exist for constructing metamodels, and suggest a number of activities and 
tasks that are possible once metamodels have been constructed and implemented. We also explain a typical metamodelling 
process, which will help to clarify some of the key differences between metamodelling and grammar-based approaches to 
language design. In Section 4, we compare metamodelling and grammars in some detail, in terms of some basic terminology, 
key conceptual differences, and the strengths and weaknesses of modelware and grammarware. We also briefly explain how 
to map key concepts from modelware to grammarware, focusing on the technical level (i.e., how implementation concepts 
from metamodelling can be encoded as grammar concepts). Finally, in Section 5, we present three examples that apply the 
metamodelling process, showing the construction of metamodels, and illustrating how they may be used to solve a selection 
of problems.

This paper is a substantially extended and thoroughly revised version of a tutorial that was first presented in [28]. Besides 
being a complete revision of the text from that paper, additional material includes a simple comparison of metamodelling 
and grammar concepts and techniques, a mapping from metamodel concepts to grammar concepts, and an additional de-
tailed example shows the use of metamodelling techniques in the complex systems domain.

2. Definitions and examples

To understand what is a metamodel, and to define it precisely, it is convenient to first define model. We take a broad 
interpretation of the term, as captured in the following definition.

Definition. A model is a formal description of phenomena of interest, constructed for a specific purpose, and amenable to 
manipulation by automated tools.

Let us consider each part in turn. Descriptions (used in the sense of Jackson [22]) are fundamental in software and 
systems engineering; a formal description is made according to rules that have been specified, and that can be checked 
against. A model abstracts from the real world; as such, some phenomena are considered to be in-scope, and others are 
out-of-scope. Descriptions are also externalised (i.e., they are not mental models, or what are sometimes called representa-
tions) and can be exchanged and shared between stakeholders. Many different descriptions can be constructed of the same 
phenomena; it is important to understand the purpose to which the description will be put. For example, an operational 
model of sensor behaviour may be appropriate for simulation or exhaustive state exploration, but it would be inconvenient 
for proof of certain properties (because an operational model may lead to a very large state space in, e.g., a model checker). 
Finally, the manipulation of models by automated tools encompasses automatable model management tasks such as model 
transformation, comparison or validation. Models can thus be of phenomena related to, for example, systems or software 
engineering, or experimental science, or other problems.

Given a model, when is it valid? For example, given a finite state machine diagram, how can we determine if it is a 
valid diagram? Parts of the model validation problem are conceptually identical to the problem of determining whether a 
sentence is valid according to a grammar. For a finite state machine diagram we would want to ensure that only valid 
symbols (rounded rectangles, arrows, labels) are used, and that only states are connected by transitions (for example). We 
need an equivalent to a grammar, for models; the equivalent is, at least informally, a metamodel (though as we shall see, 
metamodels can express simple validity properties that go beyond those expressible using BNF).

Many definitions have been provided of the term metamodel. Among key literature in the area are Bézivin’s papers on 
software modernisation [2] and On the Unification Power of Models [3]; and Atkinson and Kühne’s Model-Driven Development: a 
Metamodelling Foundation [1]. The Object Management Group (OMG) has published numerous metamodel-related standards, 
including its MDA Foundation Model [12] which includes the OMG definitions of metamodelling. As yet, there is no expert 
consensus on a precise definition of metamodel, and differences in terminology across the definitions promote confusion.

Since our purpose is to lower the entry barrier to metamodelling, we adopt a simple definition, which is compatible 
with other researchers’ definitions, but expressed in an unambiguous way.

Definition. A metamodel is a description of the abstract syntax of a language, capturing its concepts and relationships, using 
modelling infrastructure.

A language may be general-purpose (e.g., UML, SysML) or it may be domain-specific (e.g., for computer forensics [30]) – 
the latter we term domain-specific languages (DSLs). Both types of languages (for software or systems engineering) have an 
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class CITIZEN
inherit PERSON

feature ANY
spouse: CITIZEN
children, parents: SET[CITIZEN]
single: BOOLEAN is do

Result := (spouse = Void)
end

feature {BIG_GOVERNMENT}
divorce is

require not single
do .. end
ensure single and (old spouse).single

invariant
single or spouse.spouse = Current;
parents.count <= 2

end −− CITIZEN

Listing 1: Fragment of an Eiffel program.

abstract syntax, a concrete syntax, and a semantics. A description of abstract syntax is a formal expression of concepts and 
relationships that is amenable to processing by software. The concepts captured in a metamodel are the important terms 
that the language is defined to express. The relationships defines how concepts can be combined to produce meaningful 
expressions in the language. It is worth noting that abstract syntax in the modelling world is subtly different from abstract 
syntax used in the grammar community. In particular, a metamodel is regularly used to capture relationships between 
properties of concepts (e.g., simple type rules, or what is sometimes called elements of static semantics), whereas in gram-
mars these are typically expressed via, e.g., scope rules, in a way that is orthogonal to the abstract syntax. We will see 
metamodelling examples of this shortly.

Modelling infrastructure is an important element of the definition; without it, there would be little difference between 
a metamodel and a grammar. The modelling infrastructure supports the unification principle of metamodelling: that models 
and metamodels (and indeed operations upon each) are treated uniformly. In other words, metamodels are also models; this 
is likely not surprising for grammar researchers (where grammars for EBNF are also grammars) – however, all modelling 
infrastructure (e.g., Ecore, MOF) implements this unification principle, and it underpins all widely used modelling tools. 
Implementations of the unification principle for grammars are – likely for accidental reasons – not as common, nor as 
frequently used: typically, each EBNF/context-free grammar tool implements its own syntax for writing grammars.

Any machine-processable language, textual or visual, can be given a metamodel. Let’s look at two small examples.

2.1. Example 1: a metamodel for Eiffel (a textual language)

Consider, firstly, Listing 1, which is a part of an object-oriented program written in the Eiffel language [26].
An EBNF grammar for Eiffel can be found in Eiffel reference books, and the Eiffel compiler implements parsing algo-

rithms for Eiffel. However, if we identify a suitable metamodelling infrastructure, we can also define a metamodel for Eiffel, 
describing the important concepts and relationships of Eiffel programs.

For now, it is sufficient to assume that the “metamodelling infrastructure” is some technology that allows entities (holding 
data) to be precisely defined, related and instantiated. Thus, for example, an object-oriented programming language might 
suffice as the metamodelling infrastructure in which to describe Eiffel (this is not completely correct; we clarify this shortly). 
The metamodel uses the semantics of the metamodelling infrastructure, a form of referential semantics for the concepts and 
logic of the languages defined by the metamodel. In this example, the metamodel for Eiffel is described in Java. Listing 2
gives part of the metamodel, focusing on Eiffel classes and features (operations and attributes), invariants and parents.

What do these Java classes describe? The first describes an entity (called EIFFEL_CLASS) that consists of several public 
fields. Each field is a List. The first field of this class describes the features of EIFFEL_CLASS (the Eiffel attributes and opera-
tions), the second the invariants, and the third the parent classes. The generic parameters of the Lists are important, and are 
key parts of the metamodel: they represent descriptions of other important entities in the metamodel, viz., EIFFEL_FEATURE
and EIFFEL_INVARIANTs. Note that EIFFEL_INVARIANT encodes the concepts and relationships of Eiffel invariants, particularly 
their abstract syntax; an evaluation function would be needed to evaluate the invariant on an object state.

It is useful to observe that EIFFEL_CLASS abstracts from the order in which features, invariants, and parents appear in an 
instance – that is, invariants, feature declarations and inheritance clauses can be interleaved. For example, a valid instance of 
EIFFEL_CLASS might first define a procedure, then an invariant, and then an inheritance clause. This is not quite valid Eiffel 
(according to [26]) because inheritance clauses must appear before any feature declarations, and invariants must appear 
after feature declarations. We could capture these additional conditions using, for example, well-formedness constraints; 
our next example illustrates how to use such constraints.
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class EIFFEL_CLASS {
public List<EIFFEL_FEATURE> features;
public List<EIFFEL_INVARIANT> invariants;
public List<EIFFEL_CLASS> parents;

}

class EIFFEL_FEATURE {
public String name;
public EIFFEL_TYPE feature_type;

}

Listing 2: Part of an Eiffel metamodel specified in Java.

Fig. 1. A simple ER diagram metamodel specified in UML.

Class EIFFEL_FEATURE is partially described: each Eiffel feature has a name and an EIFFEL_TYPE; a more elaborate meta-
model for Eiffel features would perhaps distinguish operations (which may be procedures that change object state, or 
functions that are side-effect free, optionally with parameters) from attributes. Such a metamodel can be found in [27], 
expressed in a variety of different styles.

The Java program in Listing 2 is a description of what is generally referred to as the abstract syntax of parts of the Eiffel 
language.

Describing the abstract syntax is the first step in a metamodelling process that leads to the development of a rich 
modelling language and editor toolset, with, for example, semantics, model editing support and interoperability with other 
languages. In practice, in modelware, describing abstract syntax is often the only step taken. We present a metamodelling 
process later.

Why might we want to create a metamodel for Eiffel? After all, Eiffel already has widely accepted grammars/EBNF, with 
parsers. Among reasons for creating a metamodel are the enabling of the use of model management technology and tools 
(e.g., for model refactoring or model merging), and interoperation between existing Eiffel grammar-based tools and model 
management tools. Other motivations are discussed later.

2.2. Example 2: metamodel for ER diagrams (a visual language)

Our second example is a metamodel for a visual language. When working with databases, we construct data models. 
A simple data model consists of a number of entities containing attributes, as well as references to other entities. Data 
models can be expressed in some form of entity-relationship (ER) diagrams. Here, the modelling infrastructure used to 
express the metamodel is UML [14].

Fig. 1 gives an example of a metamodel for part of a simple ER diagram language. The metamodel diagram describes 
the concepts: DataModel, Entity, Attribute and EntityReference. Each concept has a number of attributes, particularly ones 
describing names of concepts. The concepts are also related: in particular, a DataModel is composed of zero or more Entity
concepts, and an Entity is, in turn, composed of a number of Attribute concepts. The EntityReference concept is a little 
different, in that it refers to exactly one Entity concept (the arrow without a diamond, pointing at Entity). The relationship 
from Entity to EntityReference uses a solid diamond (composition), meaning that if an entity is removed or deleted from a 
model, so too are its entity references; in contrast, if an entity reference is removed, the entities to which it applies are not 
eliminated. This is a typical behaviour of a simple ER diagram editing tool.

Once again, this metamodel captures the abstract syntax of a language; it says nothing about the concrete syntax or the 
semantics that the end-users of the ER language might apply. By decoupling the definition of abstract and concrete syntax, 
we potentially allow ourselves flexibility in designing and deploying different concrete syntaxes (e.g., a visual syntax and a 
textual syntax) that conform to the abstract syntax. However, modelling needs more than this to be useful.

There is an important point to note about the example metamodel shown in Fig. 1: it allows models to be instantiated 
that are not desired. Consider the Entity concept, which has a name field. When we construct an ER diagram, we populate 
it with a number of entities, each of which are instances of the Entity concept. Each of these entities must have a name. 
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context DataModel inv:
self .entity−>collect(name)−>asSet().size() = self.entity.size()

Listing 3: OCL well-formedness rule.

However, there is nothing in the metamodel shown in Fig. 1 that requires entities to have unique names, nothing to prevent 
us from using the same name for every entity. If we wish to enforce unique entity naming in the metamodel and language 
definition, we need to augment the description of abstract syntax with well-formedness rules – constraints on the metamodel 
that prevent ill-formed models from being constructed. If we were using Java to express a metamodel, we could write a 
simple method that traverses the Lists of concepts to ensure that all entities have a unique name. When using UML concrete 
syntax to express a metamodel, we typically use the OMG standard Object Constraint Language (OCL) for this purpose. An 
example of an OCL constraint for this metamodel is shown in Listing 3. It states that, in the context of any DataModel, 
names of entities must be unique (there are a number of different ways to express this).

In grammar terms, such a well-formedness rule corresponds to a static semantics. It is perhaps noteworthy that some 
static semantic rules in metamodelling can be captured using metamodelling infrastructure (and not a constraint language 
like OCL) directly, e.g., multiplicity constraints on references, whereas with traditional context-free grammars such rules are 
out of scope (and would be captured using attributes or other means).

2.3. Mathematical definitions

A mathematical definition of metamodel appears in [4]; we restate it (slightly changed) here. The definition is founded 
on notions of graphs. First, we precisely define model.

Definition. A model M is a triple (G, Ω, μ) where G is a directed multigraph, Ω is a reference model associated with a 
(potentially different) directed multigraph GΩ , and μ is a mapping function that associates elements of G with nodes of GΩ .

The mapping between model and reference model is called conformance; this is the fundamental relationship involved in 
defining metamodels. Models are said to conform to one or more metamodels. The issue of when models should conform to 
a metamodel is one for debate, and typically depends on the tools that are being used to construct the models. Generally, 
for a tool to be able to load and process the model, the model must conform to a metamodel.

To understand what follows, it is helpful to recall the unification principle mentioned earlier: a metamodel is also a 
model.

The definition of model is precise but broad, and allows arbitrary notions of conformance to be defined. In practice in 
Model-Driven Engineering, three specific types of model are distinguished.

• Terminal Model: a terminal model has a reference model, Ω that is a metamodel. A classic example of this is where M
is a UML class diagram and Ω is the UML metamodel.

• Metamodel: a metamodel has a reference model, Ω that is a metametamodel. A metametamodel (defined precisely next) 
is, informally, a language used specifically and only for expressing metamodels. A classic example of this is where M is 
the UML metamodel and Ω is MOF, the OMG standard through which metamodels are defined. Ecore (which is part of 
Eclipse EMF) is an implementation of a simplified form of MOF.

• Metametamodel: a metametamodel has a reference model, Ω , that is itself; in other words, metametamodels are self-
defining and they are used to implement themselves. More precisely, in a metametamodel, M = Ω . MOF and Ecore are 
both examples of metametamodels and are self-defining, making use of the reflective programming capabilities of their 
platforms (in this case, Java). Interestingly, Ecore in comparison with the UML metamodel is relatively straightforward 
(in terms of number of concepts and their relationships).1

2.4. Standard technologies for implementing metamodels

A number of standard technologies are widely used for metamodelling. We summarise the most well known ones here.

• The OMG’s metamodelling stack is based on the Meta-Object Facility (MOF) [13]; MOF is a metametamodel – that is, it 
is a domain-specific language for metamodelling. MOF is reflective, and is used to define metamodels such as the UML, 
and many others. The OMG stack is generally called a four-level stack: at the top of the stack is MOF, which defines 
metamodels that sit at the next level of the stack. Below metamodels are models, which are instances of metamodels. 
Finally, models themselves can be instantiated, and these instances are at the bottom of the stack.
MOF is sufficient to define the abstract syntax of languages, but does not provide native support for, for instance, 
well-formedness rules. MOF actually consists of two versions (Essential MOF and Complete MOF), and OCL is normally 

1 This is not the case for MOF, which has a complex relationship with the UML metamodel, and is not discussed further here.
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used to define well-formedness rules: e.g., the UML metamodel is defined in terms of MOF and OCL. As yet, there is no 
widely accepted standard for defining concrete syntax or semantics of a language. Some metamodellers use HUTN [11]
as a concrete syntax, and some use UML directly to define the semantics of languages; OMG is working on a Diagram 
Definition standard to support some concrete syntax [15]. An implementation of MOF was available via the NetBeans 
Metadata Repository (MDR) – though the project now appears to be discontinued.

• The Eclipse Modelling Framework (EMF) supports the Ecore standard, which is a simplified implementation of MOF. 
Ecore is currently the de facto standard for metamodelling, and is used in the Eclipse implementation of UML, along 
with many other general-purpose and domain-specific language (DSL) tools.

• MetaDepth is a so-called deep metamodelling infrastructure [6]. It avoids a well-known issue with the OMG meta-
modelling approach, wherein some concepts appear in multiple levels of the stack (objects, for example, are concepts 
appearing both in metamodels and models). Another approach that avoids this issue is the Golden Braid architecture [5].

• XML is sometimes used as a modelling technology, with XML schemas providing an approximate equivalent to a meta-
model. There are advantages to using XML: it is a widely understood and used technology; there are excellent tools for 
editing and validating XML documents; and XML can be imported and manipulated by many applications. In [25], it 
is argued that the entry barrier to MDE modelling can be reduced through using XML as a modelling technology and 
schemas to support metamodelling. However, XML (and XSD) focuses on concrete syntax, does not easily support graph 
structures (except by using IDs and IDREFs), can be very verbose for language definition, and is likely less than popular 
to use directly as a modelling language, when compared with alternatives.

2.5. Summary

The example metamodels presented in this section, described using Java and UML’s class diagram concrete syntax, il-
lustrate how to define the abstract syntax of languages using mechanisms other than EBNF. We return to discussion of 
the characteristics of metamodelling infrastructures, as well as the overall metamodelling process, shortly. Before that, we 
motivate metamodelling, and address the question why construct metamodels in the first place? In doing so, we illustrate some 
of the key differences between metamodels and grammars.

3. Why metamodel?

Metamodels are constructed for many reasons. A common one is to precisely describe a language so that modelling tools 
such as editors can be created to support use of the language. However, this is also a reason why EBNFs and context-free 
grammars are created. Indeed, both the construction of grammars and metamodels share a number of common use cases; 
some typical grammar use cases were presented in [31]. We create metamodels and grammars in order to:

• present and process large amounts of documentation in a structured and repeatable way;
• generate valid, well-formed text from a variety of input sources (models, metamodels, programs);
• enable traceability use cases, where we link machine-processable artefacts (models, programs, grammars, metamodels) 

to each other and to external artefacts (without metamodels), such as documentation, web pages, and requirements;
• document and support language evolution over time;
• precisely define languages in a way that allows us to use (software) tools to check sentences written in the languages;
• compare languages, in terms of their features, their structures, and their patterns.

Once constructed, a metamodel enables many engineering tasks. Typical tasks and scenarios that are supported by meta-
models include:

• Creating well-formed models that conform to the concepts and logic expressed in the metamodel. This is analogous 
to creating well-formed sentences that conform to an EBNF grammar. Conceptually, this is similar to the next task 
(checking properties) though we explicitly distinguish it because conformance is a fundamental property of models: it 
distinguishes valid from invalid models, and from a practical perspective, it distinguishes models that can be loaded 
into an editor (e.g., an Eclipse editor) from those that cannot. Conformance checking is normally provided by the 
metamodelling infrastructure that is used (e.g., Ecore, MOF).

• Checking that models satisfy desirable (or mandatory) properties, such as the OCL constraint presented earlier (List-
ing 3). We distinguish properties from conformance; that is, we check properties on models that conform to their 
metamodel (though in practice, we might use similar algorithms or techniques for checking conformance and for 
property checking). We can have any number of properties – for instance, we might add to the simple ER diagram 
metamodel (Fig. 1) constraints to disallow models where names of Entity concepts and EntityReference concepts are 
the same. We could express all the properties in a set of OCL rules applied to the metamodel, or we could transform 
our model into a form that allows properties to be easily checked (e.g., using a theorem prover). This is analogous to 
writing a type (or property) checker for an abstract syntax tree using, for example, a tree walker, or by using grammar-
based static semantics constraints. In metamodelling, the property checking that is carried out abstracts away from the 
internal algorithms needed to traverse trees or data structures, using instead so-called navigation expressions.
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• Transforming models (that conform to a metamodel) into models that conform to a (potentially different) metamodel. 
This is called model transformation. An example of this is transforming a UML class diagram model into a relational 
database model. In grammar terms, this scenario is similar to one where an object-oriented data structure (e.g., in 
Java) is programmatically transformed into another (e.g., SQL instructions), where both the source and target languages 
have context-free grammars. Special cases of model transformation include update-in-place transformations (where the 
source and target metamodels are the same), and model merging (where two or more input models are combined in 
a single output model). Conceptually there is little difference between model and program transformation, except for 
the artefacts involved (model/metamodel/graph versus program/grammar/tree), though model transformations are more 
directly applicable to graphical languages.

• Generating arbitrary text from models that conform to a metamodel. For example, you can produce documentation, or 
code, or web pages from a model. This process – called model-to-text transformation, is generally distinguished from 
model transformation as it produces an artefact that does not conform to a metamodel. This might correspond, in the 
grammar world, to a transformation that takes strings (conforming to a grammar) as input and produces arbitrary text 
that does not conform to a specified grammar.

• Comparing models that conform to the same metamodel, or to different metamodels. Comparison could be done as 
a precursor to version control on models, or to highlight differences between models, or as part of a testing process. 
Model comparison is roughly equivalent to the process of program comparison, e.g., as is used in code clone detection or 
code versioning/differencing.

3.1. Metamodelling process

In practice, metamodelling follows a well-defined (though certainly not standardised) process, evolved over a long time, 
in particular as a consequence of the development of UML, and drawing on significant experience in building DSLs. The 
objective of the metamodelling process is to develop a specification (ideally with supporting tools) for a language. The 
process is usually iterative, and is non-trivial: a complex modelling domain, such as real-time and embedded systems with 
both fine- and coarse-grained modelling requirements invariably leads to an extensive modelling language, and hence to 
a complicated metamodel or set of metamodels. Nevertheless, the process that is followed for developing a complicated 
metamodel is generally no different than that for a simple one. The basic steps, taken from [5], are as follows.2 We use 
these steps in the examples that follow.

1. Select a metamodelling infrastructure (see Section 2.4).
2. Define an abstract syntax using the metamodelling infrastructure.
3. Define well-formedness rules and any operations on the metamodel.
4. Define one or more concrete syntaxes that conform to the abstract syntax.
5. Define semantics.
6. Define mappings to other languages, e.g., using transformations.

The second phase – defining an abstract syntax – receives the most attention in published examples of metamodelling. 
The abstract syntax of a language can be defined in many different ways; the two most common approaches are to de-
fine the abstract syntax from scratch (using the metamodelling infrastructure; we provide examples of this later), or to 
modify/customise an existing abstract syntax (e.g., modifying the abstract syntax of a general-purpose language like UML).

In language development, the metamodelling process may end at different stages. A proof-of-concept or prototype meta-
model may terminate after the second or third step: it may be that the existence of an abstract syntax (which can be 
manipulated by a reflective editor) is enough to validate the prototype. For deployment in a production-quality language 
workbench, the first five steps will be carried out. To support working with legacy/brownfield3 development, as well as 
integration with other software development tools, all six steps may be needed, and the mappings themselves may need to 
be validated.

4. Modelware versus grammarware

As our previous discussion has implied, there is substantial overlap between grammars and metamodels, and grammar-
based and model-based technology, both in terms of what can be done with them, and in terms of their concepts and 
construction. In this section we attempt to draw out the differences and similarities in a number of ways: first by consol-
idating and comparing the fundamental terminology, then by contrasting terminology and strengths and weaknesses, and 
finally by indicating how metamodel concepts can be mapped to grammar concepts.

2 The steps are similar to those used in grammar-based language definition, e.g., see [19].
3 Greenfield development of software starts from scratch, with no dependence on previous software/requirements; brownfield development involves 

consideration and interoperation with existing systems.
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Table 1
Relating metamodel and grammar terminology.

Metamodelling term Purpose Grammar term

Model A description to be processed by tools Sentence
Metamodel A language definition Grammar
Metametamodel A language for defining languages Self-describing grammar

4.1. Terminology comparison

Grammars and metamodels serve similar purposes but their theories and tools are based on different terminology. We 
summarise this essential terminology in Table 1, which we use to relate modelware terminology to grammarware terminol-
ogy in terms of common purposes.

The last row of Table 1 requires some discussion. A model is an instance of a metamodel; a model is also said to conform 
to its metamodel. Similarly, a sentence conforms to its EBNF/grammar. The question then is: what do you use to describe 
language definitions? More concretely, in grammars, in what language do you define an EBNF? In metamodelling, in what 
language do you define a metamodel? In both technology paradigms (or technology spaces [7]) you need a language for 
defining languages – in the case of modelware, you use a metametamodel (such as Ecore); in grammars you can use a 
reflexive EBNF. In both cases, the language is self-defining, in the sense that it is its own meta-description. The advantage of 
this approach is that the technology hierarchy (e.g., a model conforms to a metamodel that conforms to a metametamodel) 
terminates, and thus the technology can be bootstrapped and implemented. A disadvantage is that it can be difficult to de-
termine what an element in a model (or a sentence) actually includes. For example, consider a UML class called Person. This 
is (informally) an instance of a Classifier from the UML metamodel, which is in turn an instance of a MOF (metametamodel) 
class: the Person class includes features inherited from both the UML metamodel and the metametamodel.

4.2. Conceptual comparison

It appears that what you can do with metamodels you can do with grammars (and vice versa). At the very least, 
there are many similarities between the two approaches. So what are the key differences between metamodelware and 
grammarware? Again, this is a matter of debate, but there are a number of important differences worth elaborating.

• Trees and graphs: Metamodelling, and metamodelling infrastructure, is designed to be applicable to both tree-based 
languages (where the abstract syntax is a tree) and graph-based languages (where the abstract syntax is a graph). By 
contrast, grammars are most appropriate to the definition of tree-based languages. This doesn’t mean that you cannot 
apply grammar technology to graph-based languages, only that it may be awkward to do so. Note that this distinction 
ignores technology such as Xtext,4 which is arguably both grammar- (engineers use grammars to define languages) 
and metamodel-based (EMF and metamodelling technology is used internally to represent languages); arguably, the 
differences between grammars and metamodelling are blurring.

• Abstract vs. concrete syntax first: When defining a new language, the metamodel engineer always starts with the def-
inition of the abstract syntax of the language, and uses this to later develop concrete syntax and operations (such as 
transformations) on models. In doing so, the metamodel engineer takes a modelling approach to language definition, 
starting with a conceptual model (i.e., the abstract syntax), that is later refined to an implementation (e.g., concrete syn-
tax, operational semantics defined using transformations). The picture is not so clear with grammar-based approaches. 
In some situations, the grammar engineer starts by defining a concrete syntax (e.g., using an EBNF tool), and an abstract 
syntax is inferred or constructed. This is the approach taken in classical parsing technology (such as Yacc/Bison). How-
ever, other grammar technology and tools, such as ANTLR,5 are more flexible and support abstract syntax (in the form 
of trees) as a first-class engineering artefact; moreover, formal semantics developments that are based on grammars 
typically only make use of a definition of abstract syntax.

• Metamodel-concrete syntax vs. grammar-AST: For defining textual languages, metamodel and grammar-based ap-
proaches converge. After defining the abstract syntax of the language (the metamodel), the metamodel engineer needs 
to define the textual concrete syntax of the language. On the other hand, after defining the grammar of the language, 
the grammar engineer will need to define the DOM/AST of the language so that any further manipulation happens on a 
semantically-rich structure rather than on a homogeneous concrete syntax tree. Whether these steps happen automati-
cally (via tools) or manually depends on the technology chosen to support the language engineering process.

• Semantics: with metamodelling approaches, the focus is most significantly on the development of language syntax and, 
perhaps, well-formedness rules and operations upon models, leading to the construction of language editors. Language 
semantics is not broadly supported by metamodelling frameworks like Ecore, and typically language semantics is pro-
vided by transformation, simulation, or by constructing bespoke interpreters. By contrast, grammar-based approaches 

4 http :/ /www.eclipse .org /Xtext/.
5 http :/ /www.antlr.org.

http://www.eclipse.org/Xtext/
http://www.antlr.org
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are seemingly well integrated with techniques for providing language semantics (e.g., denotational or operational se-
mantics rules can be applied directly to abstract syntax).

• Standards: In the metamodel space, there is a widely accepted de facto standard for defining the abstract syntax of 
languages (EMF/Ecore). In the grammarware world, there is a variety of EBNF-derived grammar definition languages 
which are not generally consistent with each other: there have been efforts to standardise EBNF [20], but they do not 
seem to have had the same impact as metamodelling standards. Interestingly, the significant standardisation effort in 
modelware has led to a number of standards (MOF, QVT, etc.) that are influential but less widely used than alternatives 
(EMF/Ecore, ATL, etc.). Nevertheless, standards are important for industrial uptake.

• Standard tools: The dominance, in metamodelling work, of the EMF de facto standard has led to the development of a 
large number of model/DOM management languages and tools which can work with models conforming to any language 
defined using MOF/Ecore, regardless of its concrete syntax(es). Such tools include model-to-model and model-to-text 
transformation languages, model validation and refactoring engines, model comparison and merging tools, etc. The 
absence of such a dominant framework for constructing consistent DOM/AST implementations in grammarware hampers 
the development of language-agnostic tools.

• Concrete syntax tools: Once the abstract syntax of a language is defined in the metamodel world, there is a selection of 
mature tools that the engineer can use to develop textual (e.g., Xtext, EMFText), graphical (e.g., GMF, Graphiti), or hybrid 
concrete syntaxes for the same abstract syntax. To our knowledge there are no widely accepted toolkits for developing 
alternative graphical syntaxes for textual languages in the grammar world, though powerful toolkits such as TXL easily 
support development of alternative textual syntaxes.

• Metamodels as models: Metamodels and models are unified by their metamodelling infrastructure, and can generally 
be treated interchangeably. To put it another way, by construction, a metamodel can be treated like any other kind of 
model. As yet, EBNF is not treated uniformly like any other grammar in grammar-based tools: modelling tools can share 
metamodels, but grammar-based tools cannot as easily share grammars.

There are two key differences between metamodels and grammars. The first is the graph versus tree difference, discussed 
earlier; the second is that in MDE everything is a model, including metamodels, the infrastructure upon which metamodels 
are defined (we discuss this later), transformations, comparisons, properties, etc. The unification of models and metamodels 
is both conceptual (like it is for grammars and meta-grammars) and practical (all metamodelling infrastructure implements 
it, whereas for grammar technology, standardised meta-grammars are not widely used).

This unified treatment of the universe of discourse has both advantages and disadvantages. For one, it is conceptually 
elegant: everything is a model, you just need to understand what type of model it is in order to process it effectively. Second, 
it allows remarkably generic and flexible programs to be written that process models. Third, it can be used to manage 
the semantic gaps that arise between software engineering artefacts; for example, the mapping from architectural design 
to detailed design may be simplified assuming that models (with metamodels) are used to capture both styles of design. 
However, there is a price to be paid: models have deep structure – e.g., a class in a UML diagram is an instance of a UML 
classifier which is an instance of a MOF element. Deep structure may lead to inefficiencies, for instance in persisting mod-
els, and thereafter loading them and processing them, because the structural relationships between elements in different 
meta-levels must be maintained as the models are modified.

4.3. Strengths and weaknesses

Are there general advantages or disadvantages to using grammar-based approaches versus metamodel-based approaches? 
Arguably not – they address similar conceptual and technical problems, are used to define abstract and concrete syntax, and 
enable automated processing of languages, and programs/models that conform to those language definitions. Nevertheless, 
there are some basic lessons that can be synthesised.

• Implementing a textual language may initially require less effort using grammar technology than metamodel technology, 
in terms of producing a functioning editor. With metamodelling technology, not only must a metamodel be constructed, 
but also a mapping to concrete syntax (assuming that a trivial tree-based editor is insufficient). Modern grammar 
toolkits can produce a functional editor for a textual language from either a description of abstract syntax or concrete 
syntax.

• Implementing a graphical language may initially require less effort using metamodel technology than grammar technol-
ogy, in terms of producing a functioning editor usable by a software engineer. The separation of abstract and concrete 
syntax inherent to metamodelling and the typical graph structures inherent to graphical languages allow graphical 
syntaxes and editors to be easily attached to a metamodel.

• There are numerous situations in which grammar and metamodel techniques should be used together. We mentioned 
Xtext earlier: Xtext has a grammar front-end and a metamodel back-end, and as such allows grammar and metamodel 
tools to be used systematically and synergistically (e.g., by sharing and manipulating EMF/Ecore models). This is a good 
example of where using grammars and metamodels together enhances tool interoperability. Another example is in the 
production of industrial-strength graphical editors, for languages such as SysML – both metamodels and grammars are 
needed, the former to support development of the graphical editor (e.g., the palette, drawing frame, drag-and-drop 
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interface); the latter to support smart textual annotation (e.g., syntax highlighting or code completion when editing 
names/attributes of SysML elements).

4.4. Mapping metamodels to grammars

We have presented terminological and conceptual comparisons of metamodels and grammars, and highlighted some 
strengths and weaknesses. How do we bridge these technological spaces? Should the need arise, how do we move from 
using metamodels to grammars, or from grammars to metamodels? In defining bridges between technological spaces, it 
may be possible to precisely define the differences and strengths of each approach.

There has been substantial work on mapping grammars to metamodels; this work is often used to bootstrap an MDE 
project or workflow from one that has previously only used grammar technology. This mapping process involves producing 
a model or metamodel from grammars. State-of-the-art tools such as Xtext (there are many others) support the inference 
of an Ecore model from a grammar, and also use Ecore as a back end for representing languages. Another approach is 
Grammar2MoL, which exploits model transformations to carry out the inference.

The mapping from metamodels to grammars is less studied [10]. A metamodel-to-grammar mapping is a special kind 
of model-to-text (M2T) transformation. Generally, in M2T transformation, the output is a stream of characters that is con-
structed by application of templates to model elements. Checking the conformance of this output stream to an EBNF or 
grammar is something that is not often done; it is normally the templates that are validated (e.g., by testing). A mapping 
from metamodel-to-grammar using M2T transformations would likely need to ensure conformance of the generated text 
with a grammar. An alternative would be to define a metamodel-to-grammar mapping using the platform-specific (native) 
implementation of metamodels (e.g., XMI, MDL) and grammar tools such as TXL or Stratego. However, working with na-
tive metamodel implementations can be challenging and awkward (especially for large metamodels such as UML MARTE 
or AUTOSAR), and integrating such grammar tools and grammar-based programs with model management operations in a 
workflow or toolchain can be complex. To illustrate one way in which metamodel concepts can be mapped to grammars, we 
provide small examples, based on [9], that show how concepts from the Ecore metamodelling technology can be mapped 
to EBNF (or context-free grammar) concepts – noting that there are numerous other ways in which metamodels can be 
mapped to grammars. Given a mapping from Ecore to a suitable EBNF, it is then possible to transform Ecore models (i.e., 
metamodels) into grammars, and thereafter to build toolchains that include both MDE components and grammar-based 
components.

The important elements in Ecore are classes, datatypes, attributes, and references (references may be containment rela-
tionships between objects). The Ecore elements are implemented using EClass, EDatatype, EAttribute and EReference classes.6

Note that there is no generalisation (inheritance) relationship in Ecore; instead, parent-child relationships are encoded using 
references.

Ecore elements can be mapped to EBNF constructs as follows.

• An EClass C is mapped to a non-terminal symbol C. The contents of the EClass must also be mapped (by applying other 
mapping rules). It may be useful to delimit the mapped content of C by using a user-defined keyword in the right-hand 
side of the production rule defining C. For example, an EClass Player could be mapped to the production rule

Player ::= “player” . . .

where the string player is used to delimit the mapped contents of EClass Player.
• Where an Ecore model includes multiplicity values on references, these can be mapped directly to EBNF constructs. For 

example, a 0..1 multiplicity in Ecore can be mapped to ? (optional) in EBNF. The ∗ multiplicity could be mapped to the 
Kleene closure operator in EBNF.

• Ecore supports a variety of Datatypes (Booleans, doubles, characters) which do not have a direct mapping in EBNF 
but have platform-specific representations. Given that Ecore datatypes are encapsulations of Java primitives, the Ecore 
datatypes would be ideally mapped to their Java equivalents. Datatypes are typically used with EAttributes (representing 
attributes of EClasses). Thus, we generally map attributes and datatypes together. Some examples follow.
– Consider an EClass named Player with an EAttribute isAlive: EBoolean. This could be mapped to the following produc-

tion rule:

Player ::= “player”(“alive”)?

The optionality in the production rule captures the two possible values of the EBoolean attribute.
– Suppose the same EClass has an additional EAttribute, name: EString. This attribute could be mapped to a string literal 

value (perhaps prefixed by an optional keyword, to reflect the name of the attribute), as in the following production 
rule:

Player ::= “player”(“alive”)? < ID_Player >

6 See http :/ /download .eclipse .org /modeling /emf /emf /javadoc ?org /eclipse /emf /ecore /package-summary.html for details.

http://download.eclipse.org/modeling/emf/emf/javadoc?org/eclipse/emf/ecore/package-summary.html


406 R.F. Paige et al. / Science of Computer Programming 96 (2014) 396–416
context Conference inv:
self .speakers−>includes(

self .elements−>select(t:Track).slots.talk.presenter)

Listing 4: OCL well-formedness rule for conference timetable.

In other words, we treat the name attribute as an identifier and introduce a non-terminal for the EClass being 
mapped.

• Ecore makes substantial use of references between elements; references can be used to describe, for example, generali-
sations between classes, associations (as in UML) or compositions (containment). Simple references (where each end of 
the reference is named, and there are no circular dependencies) in Ecore can be mapped to non-terminals. For example, 
consider an Ecore model with an EClass Player that references an EClass Item; the reference is named possessions with 
multiplicity ∗ (this represents the items carried by a player in a game). The model could be mapped to the following 
production rule.

Player ::= “possessions”“(” < ID_Item > ∗“)”

A systematic presentation of a mapping from modelware to grammarware, for MOF to a Java-based implementation of 
EBNF can be found in [9].

5. Examples

In this section we present several examples of metamodelling. For the first example, we present an abstract syntax and a 
concrete syntax, defined and implemented using Eclipse’s EMF and GMF. For the second example, we present both abstract 
and concrete syntaxes, and brief details of a model transformation that uses the metamodel to support a real scenario. For 
the third example, we use metamodelling for comparing and linking languages that support complex systems modelling 
and simulation.

5.1. Conference language

This example presents the development of the abstract and concrete syntax (that is, significant parts of a DSL) for defin-
ing schedules for a conference. The idea is to provide a customised editor for domain-experts (e.g., conference managers, 
general chairs) who know about important concepts like participants, tracks (presentations on a particular theme) and slots 
where talks can be scheduled in a track. These domain-experts are not knowledgeable about metamodelling. We aim to 
build a simple editor that supports creation of conference models that take into account important conference timetabling 
concepts.

For illustrative purposes we use the EMF modelling infrastructure. The next step in the process of Section 3.1 is to define 
an abstract syntax. This requires us to think about the key concepts and structures of a conference timetable. What are 
these? There are tracks, consisting of a number of slots into which talks can be scheduled. Talks have participants (we may 
need to be sure that we avoid clashes, as a participant may need to give several talks). There is also the critical conference 
session – lunch.

Based on this, we can define an abstract syntax metamodel. In the process of defining this metamodel, we identify a 
number of recurring concepts: some concepts have names, and some concepts include timing information. These recurring 
concepts are extracted and abstracted, using inheritance (which MOF/Ecore supports). Generally, if you find recurring con-
cepts or properties in a metamodel, then just as in object-oriented programming, you may want to encapsulate these in 
their own (meta-)class.

We implemented our metamodel using the Ecore metamodelling language of EMF. A graphical view of the metamodel is 
shown in Fig. 2. The types used for the fields (EInt and EString) are built-in Ecore types.

The next step would be to define any well-formedness rules on the abstract syntax; this could be done using OCL. For 
example, we may want to state that each speaker at the conference is a presenter of a talk scheduled in a slot (in effect, 
this ensures that we haven’t missed anyone, i.e., that all talks have a registered speaker who is scheduled into a slot). This 
could be expressed in OCL, see Listing 4.

The next step of the process of Section 3.1 is to define a concrete syntax, based on the abstract syntax. We typically 
do this in collaboration with the end-users/domain-experts. As we have chosen EMF as our metamodelling infrastructure, 
an obvious mechanism to use for this is Eclipse’s Graphical Modelling Framework (GMF) as a mechanism to define our 
concrete syntax. We also choose to build a graphical syntax, as conference timetablers may be more comfortable with this. 
An example graphical concrete syntax, implemented using Eclipse’s GMF, is shown in Fig. 3; note that this is not a definition
of concrete syntax, but an example model expressed using the concrete syntax. We consider how to define concrete syntax 
shortly.

The graphical syntax conforms to the abstract syntax of Fig. 2. Indeed, the Lunch slot is an instance of the Lunch meta-
class; all graphical concepts and relationships are instances of abstract syntax concepts. We represent Tracks as rounded 
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Fig. 2. Metamodel, in Ecore’s EMF notation, defining the abstract syntax for Conference timetabling.

Fig. 3. Example conference model expressed using graphical concrete syntax, implemented using Eclipse GMF.

rectangles (with calendar annotations), and Slots as dashed rectangles (with clock annotations), for example. GMF provides 
the support needed to specify and implement this concrete syntax, though the effort required is substantial. For a detailed 
explanation of how GMF works and why the effort involved to use it is significant, see [24]. In particular, to build an editor 
with GMF requires creation of four consistent models, where relationships between said models are not always obvious, and 
are not easy to manage.
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@namespace(uri="conference", prefix="conference")
package conference;

@gmf.node(label="name")
abstract class NamedElement {

attr String[1] name;
}

@gmf.diagram
class Conference extends NamedElement {

val ConferenceElement[∗] elements;
val Participant[+] speakers;

}

abstract class ConferenceElement {
}

class Track extends ConferenceElement, NamedElement {

@gmf.compartment(layout="list")
val Slot[∗] slots ;

}

@gmf.node(border.style="dash")
class Slot extends TimedElement {

@gmf.compartment(layout="list", collapsible="false")
val Talk[1] talk;

}

class Talk extends NamedElement {

@gmf.link(style="dash")
ref Participant[1] presenter;

}

@gmf.node(label="name,country", label.pattern="{0}, {1}")
class Participant extends NamedElement {

attr String[1] country;
}

@gmf.node(label="hour,minute", label.pattern="{0}:{1} Lunch")
class Lunch extends ConferenceElement, TimedElement {
}

@gmf.node(label="hour,minute", label.pattern="{0}:{1}")
class TimedElement {

attr int[1] hour;
attr int[1] minute;

}

Listing 5: Definition of a graphical syntax for the Conference DSL.

To define the concrete syntax and implement a GMF editor, instead of using GMF directly, we made use of the EuGENia7

toolset [24]. EuGENia uses model transformation to automatically generate the models required by GMF to produce a con-
crete syntax editor. The transformations are defined on an annotated version of the metamodel that appears in Listing 5. 
In this listing we have used a textual syntax to describe the metamodel, in contrast to the graphical syntax of Ecore used 
earlier in Fig. 2.

To demonstrate the orthogonality between the abstract and concrete syntaxes, we have also developed a textual syntax 
for the same language using the EMFText [17] toolkit.8 Listing 6 demonstrates the model of Fig. 3 represented using this 
textual syntax.

To define the concrete syntax, we needed to write an extended grammar that refers to the abstract syntax of the lan-
guage. From this grammar EMFText generated a parser that can parse text that conforms to the grammar to in-memory 
models that conform to the abstract syntax of the Conference language, and vice-versa. It also generated IDE tooling such 
as a sophisticated editor supporting code completion, syntax highlighting etc. A subset of the extended BNF-like grammar 

7 http :/ /www.eclipse .org /epsilon /doc /eugenia/.
8 http :/ /www.emftext .org.

http://www.eclipse.org/epsilon/doc/eugenia/
http://www.emftext.org
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CONFERENCE "TED"

TRACK "Society" :
AT 09:15 : TALK "Nurturing creativity" PRESENTED BY "Elizabeth Gilbert"
AT 10:15 : TALK "The best stats you’ve ever seen"

PRESENTED BY "Hans Rosling"
AT 11:15 : TALK "Are we happy?" PRESENTED BY "Dan Gilbert"

AT 12:15 LUNCH

TRACK "Technology" :
AT 13:15 : TALK "Wii Remote Hacks" PRESENTED BY "Johny Lee"
AT 14:15 : TALK "The magic of truth and lies (and iPods)"

PRESENTED BY "Marco Tempest"
AT 15:15 : TALK "Why SOPA is a bad idea" PRESENTED BY "Clay Shirky"

REGISTERED SPEAKERS :
"Elizabeth Gilbert" FROM USA,
"Hans Rosling" FROM Sweden,
"Dan Gilbert" FROM USA,
"Johny Lee" FROM USA,
"Marco Tempest" FROM Switzerland,
"Clay Shirky" FROM USA

Listing 6: The model of Fig. 3 expressed using a textual syntax.

RULES {
Conference ::=

"CONFERENCE" #1 name[’"’,’"’]
!0 ( !0 elements )∗
!0 "REGISTERED" "SPEAKERS" ":" !0 speakers ("," !0 speakers)∗;

Participant ::= name [’"’,’"’] #1 "FROM" #1 country [];

Talk ::= "TALK" #1 name[’"’,’"’] #1 "PRESENTED" "BY" presenter[’"’,’"’] !0;

Track ::= "TRACK" #1 name[’"’,’"’] ":" !0 (slots)∗;

Slot ::= "AT" #1 hour[] #0 ":" #0 minute[] ":" #1 talk;

Lunch ::= "AT" hour[] #0 ":" #0 minute[] #1 "LUNCH" !0;
}

Listing 7: A subset of the EMFText grammar defining a textual syntax for the Conference DSL.

appears in Listing 7.9 In this grammar, ::= statements represent production rules for the respective concepts of the abstract 
syntax (e.g. Conference, Talk) and comprise of a mix of keyword tokens (e.g. CONFERENCE, SPEAKERS), and references to 
structural features of these concepts (e.g. name, talk).10 It is instructive to reflect between this listing and the metamodel 
presented in Fig. 3 (and the corresponding graphical concrete syntax definition, based on the metamodel, in Listing 5).

Due to the architecture of EMF, programs that work with Conference models (e.g., to validate them, transform them etc.) 
are agnostic of the actual concrete syntax in which the models are concretely described. That is, these programs operate on 
the abstract syntax of Conference models, something that is typical of modelware tools.

5.2. Proposal language

Our second example illustrates the development of languages and tools to support writing grant proposals. In some grant 
proposals, there are numerous tables that have to be produced, summarising the deliverables of the project, the research 
milestones, the work packages that break up the project into parts, the tasks associated with these work packages, and the 
partners that carry out these tasks. The information is repeated multiple times in different ways: summary tables (e.g., 
capturing all work packages and the effort associated with the project), task tables for each work package (summarising 
the tasks and effort associated with each task and work package), Gantt chart, etc. It is easy for information to become 

9 Although we have intentionally kept the Conference language – and as a result, its textual concrete syntax – simple, it should be mentioned that 
EMFText has been used to implement the complete textual syntax of Java 5.
10 For a complete reference of the EMFText grammar definition language the reader can refer to http :/ /www.emftext .org /index .php /EMFText _

Documentation.

http://www.emftext.org/index.php/EMFText_Documentation
http://www.emftext.org/index.php/EMFText_Documentation
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Fig. 4. Project content metamodel.

context Task inv:
self .startdate < self .enddate

context Project inv:
self .workpackage.leader.size() = self.partner.size()

Listing 8: OCL well-formedness rules for proposal system.

inconsistent: invariably a significant part of debugging a project proposal is ensuring that the tables and Gantt chart are 
consistent.

To help manage project proposals more effectively, we develop a metamodelling toolset to support construction of project 
models that capture the key details. A single model is used to describe project work packages, tasks, partners, etc., and is 
used thereafter to automatically generate the content needed in the project proposal. The content can be inserted into the 
proposal directly.

We work through this metamodelling example using parts of the process from Section 3.1. We first present an abstract 
syntax metamodel, capturing the key concepts of the domain. This is presented in Fig. 4.

We next create well-formedness constraints (e.g., that work packages have distinct names). These are generally straight-
forward. An important constraint might be that the start date of each task is before the end date, and that each partner 
leads at least one work package. See Listing 8.

Now we consider concrete syntax. We choose to use XML as the concrete syntax of this language. XML is widely used 
and understood, numerous smart editors exist to create and validate it, and all our partners were already familiar with it. 
Each concept in the abstract syntax is mapped directly to an XML concept, which is straightforward.

From models that are expressed in the XML concrete syntax, we can use MDE techniques and tools to automatically 
generate the information that we need for our project proposal. For example, we have implemented model transformations 
that automatically generate Gantt charts (in LATEX format) that show the main deliverables from the work packages of the 
project, shown in Fig. 5. The Gantt chart that is produced by the typesetting macros is shown in Fig. 6.

From the same project model, we can also automatically generate work package effort tables, as well as summary tables 
of deliverables and work packages. By construction, these are consistent. These transformations could, of course, be imple-
mented using grammar-based techniques, which would require implementation of a grammar and program transformations 
that generate LATEX. There is no specific conceptual advantage to using metamodel technology over grammars for this exam-
ple, though should we want to provide a graphical editor for project data in the future, use of metamodelling technology 
may provide advantages.
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Fig. 5. LATEX macros generated automatically from project model.

Fig. 6. Generated Gantt chart.

5.3. Complex systems example

Our final example shows the power of metamodelling for comparing and linking languages. A model has been expressed 
in two well-defined modelling notations, which need to be combined to support transformation of the models to code. The 
path illustrated works from existing metamodels, giving a DSL-by-customisation (as opposed to developing a DSL ab initio, 
from the required model syntaxes).

The example is drawn from research that is developing support for agent-based computer simulations of complex bio-
logical systems that complement laboratory study. The simulations represent the behaviour of biological entities (e.g., cells) 
as agents, with a simple state and basic operations. To support laboratory research, a key requirements is flexibility – it 
must be easy to adapt and extend the simulations, whilst retaining the confidence of domain experts and software engi-
neers. Quality control is enhanced by using abstract models that domain experts understand, but that also support seamless, 
repeatable development to code – for instance, using model-to-text transformations.

The example here is typical. Agents represent cells. Each type of agent has some high-level behaviour, but the exact 
behaviour of individual agents is determined by the internal state of the individual agent. In this example, the starting point 
is that the biological domain experts can understand simple Petri nets, but we need to model cell-level behaviour as well 
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Fig. 7. Part of the Petri net for prostate cell division and differentiation, based on [8]. Circles are places, here representing Stem Cells (SC), Transit Amplifying 
Cells (TA), and the daughter cells that results from division of Stem Cells (dSC). Bars are transitions, which consume a token (representing a cell) from the 
source place and produce a token in the target place.

as cell-type transitions. Our solution is to model this layered behaviour by creating and linking different models at the two 
levels of abstraction.

The next subsection first introduces the domain models, and the rationale for each model. In Subsection 5.3.2, we work 
through the metamodelling steps, showing the selection of concepts from existing metamodels and the extension and link-
age of the resultant metamodels to form a single DSL. In practice, this DSL has been used as the basis for generating a 
simulator, using manual transformation to Erlang code – full automation of the process is in progress.

5.3.1. The domain model
In the example described here, we need to capture a very abstract view of cell division and differentiation, sufficient 

to simulate a steady-state organism, and to allow modification of transition rates to reproduce and investigate mutation 
effects. The system under consideration is part of the prostate cell processes implicated in conditions such as cancer that 
are caused by aberrations in proliferation. Cells exist in a number of states that can be distinguished in prostate tissue 
samples using biological markers. Laboratory research has shown individual cells transitioning through these states, and can 
provide approximate transition rates or probabilities at the cell-type level. Biologically, a cell spends much of the time in a 
quiescent state; the time in which a particular transition can be made can also be estimated – as can the likelihood of cell 
death, which is independent of quiescence.

We can think of cells as occupying some distribution of parameter space; some cells are inherently more likely than oth-
ers to transition (generally or in some specific cases); similarly, some cells are inherently more tardy than others. Eventually, 
the simulation will be used to explore the effect of rare events on individual cells, represented through the propagation of 
changes to transition rates.

To capture the probability of cells of one type undergoing a transition to another type, the biological domain experts 
proposed, and the software engineers accepted as appropriate, Petri net modelling. the first part of the Petri net model 
is shown in Fig. 7 (the full model has 2 more distinguishable cell types, plus appropriate structural places and dead-cell 
places).

Individual cells are represented as Petri net tokens. Cell-level behaviour is inherently variable, and it biologically essential 
that a cell-token can only take part in a transition between cell-places when the cell is in an appropriate internal state. Thus 
we add a model of internal cell states and state transitions associated to each Petri net Place. This lower level transition 
system can most readily be expressed using a simple state chart notation. Again, the trigger for a transition is based on a 
biologically-derived rates or probability. The use of a Petri net and separate state charts to model this system is a conceptu-
ally cleaner solution than overloading the Petri net with notions of token state and sub-transitions. An example state chart 
is given in Fig. 8.

The domain model expressed in the state charts and Petri net has been extensively reviewed by both biologists and 
software engineers, and is agreed to be a suitable abstract design for the simulator. However, we must now create a flexible, 
extensible implementation that can be manipulated via these abstract models. The first step that we take, the subject of 
this example, is to create a DSL from the standard definitions of the Petri net and state diagram languages.

5.3.2. Creating and using the metamodel
To construct a single DSL, we start the metamodelling process described in Section 3.1. First, we note the steps and what 

is required. We then illustrate steps 2 and 3 in more detail.
Step 1, Section 3.1 requires that we select a metamodelling infrastructure. Both Petri nets and state charts have existing 

metamodels – as discussed in [29]. We take as the starting point for the DSL, the standard high level Petri net graphs 
(HLPNG) extension of the Petri net core metamodel [21,18], and the state diagram concepts from UML 2.4.1 [16]. Both 
metamodels are defined using MOF, and their concepts are thus fundamentally compatible.

Step 2, Section 3.1 requires us to define an abstract syntax in MOF. In developing a DSL by customising existing metamod-
els, this is a non-trivial step, comprising the following tasks:



R.F. Paige et al. / Science of Computer Programming 96 (2014) 396–416 413
Fig. 8. A state chart showing the possible transitions of an individual cell whilst in the stem cell (SC) place of the Petri net (Fig. 7), based on [8]. Arrows 
represent transitions due to events, which may be internal or external. External event transitions come from the solid circles, and go to the nested circles. 
States (rectangles) have duration, whilst transitions are conceptually instantaneous changes of state.

• select the appropriate concepts from the language definitions of HLPNG Petri net and UML state diagrams;
• modify the metamodel fragments to incorporate the required DSL semantics;
• merge the metamodel fragments into a single DSL that could be given its own graphical syntax, graphical editor, etc., 

and that can form the basis for transformation into textual languages such as code.

The well-formedness rules of the DSL (step 3, Section 3.1) include existing well-formedness conditions from the existing 
metamodels, and new conditions needed to define the semantic mappings between the Petri net and state chart notations. 
In order to define the mappings, we need to modify the abstract syntax represented in the Petri net metamodel. Thus, 
steps 2 and 3 are interrelated, and the following describes both the definition-by-customisation of the abstract syntax of 
the DSL, and the well-formedness mapping rules.

The next step, step 4 of the metamodelling process (Section 3.1) is to define appropriate concrete syntaxes. In one sense, 
this is trivial, since the DSL can adopt the concrete syntax of the source models. However, model-driven engineering and 
modelling approaches would not currently support development of a graphical editor that requires the “expansion” of a 
high-level model concept (a Petri net place) to reveal a lower-level model (a state diagram). Creation of a model at a single 
level of abstraction requires creation of a new concrete syntax.

Step 5 requires us to define the semantics of the new DSL. However, this is inherent, captured in the original language 
definitions, and the modifications described above.

Finally, step 6, defining mappings to other languages, is the goal of the metamodelling exercise outlined here: from the 
completed DSL, mappings can be defined using MDE transformations to code and other models, as has been illustrated in 
the other examples, above.

5.3.3. Creation of a unified DSL metamodel

Selecting appropriate concepts. from the existing metamodels gives the (leaf) components listed in Table 2. Disambiguation or 
meta-concepts with the same name from each metamodel uses PN for Petri net and SD for state diagram.

The selected concepts listed in Table 2 are subclasses of metaconcepts in the published metamodels. For example, some 
of the extracted parts of the structure of the HLPNG Petri net metamodel is shown in Fig. 9. The structure of the extracted 
UML metaconcepts for the state diagram is shown in Fig. 10.

Modifying the metamodel concepts. starts from the requirements for the new DSL:

1. The Condition for a PNTransition includes the condition that the state of the token allows that transition: in Fig. 7, for 
instance, a PNTransition from SC to TA requires that the SC token (cell) is in the active state, and that the diff-sc event 
fires (Fig. 8).

2. In order to preserve the variable characteristics of individual cells, the state (the current attribute values) of a token 
(cell) must be preserved in a PNTransition. In Fig. 7, for instance, the diffSC transition must use the state of the token 
consumed from the SC Place to create the token produced in the TA Place.

The main changes needed are to the Petri net. A new meta-class called State Seq. is introduced, a subclass of attribute, to 
represent the state of a token consumed by a PNTransition: the type of State Seq. is the type of the Place from which the 
token is consumed – defined by a meta-association from the new State Seq. class to the existing Type class. The structure 
of the change is shown in Fig. 11.

In Fig. 11, the structure of the Condition annotation is shown. Condition is stated to be a Boolean expression [18]. No 
structural change is required to define that the Condition becomes a conjunction of the HLPNG Boolean expression and 
an appropriate interpretation of the signal from the state diagram, but an additional metamodel constraint is required.

Finally, no structural changes are needed to the state diagram metamodel.
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Table 2
Required Petri net and state diagram metamodel concepts.

Concept Informal meaning

Place A Place holds Petri net tokens of its type until a transition 
condition is true.

PNTransition When a transition condition is true, a PNTransition
consumes one or more tokens and may produce one or 
more tokens; the tokens produced have the type of the 
target Place(s).

Arc Denotes which Places are sources (targets) for which 
PNTransitions.

PNName Denotes the name of an Arc, Place or PNTransition.
Marker Denotes the number of Petri net tokens in a Place.
Condition Denotes the condition for a Petri net token taking part in 

a PNTransition.
Type Denotes the type of a Petri net Place, which defines the 

type of its tokens.
State A label given to an object (of a UML class), defined 

according to a specific set of attribute values. Note that 
the attribute values may include the name of the state.

SDTransition When the set of attribute values of an object (of a UML 
class) no longer mets the definition of its current state, it 
makes an instantaneous SDTransition to another state. The 
SDTransition may be triggered externally (forcing the 
object into a new state) or internally (due to internal 
behaviour of the object).

Trigger The result of an event that causes the condition for a
SDTransition to become true.

Fig. 9. Part of the Petri net core metamodel, based on [21,18]. A Petri net comprises Objects, which may be Nodes or Arcs. The nodes are Places and
Transitions. Reference nodes and transitions allow the Petri net to be split into sub-diagrams.

Merging the metamodels. is accomplished by linking the relevant concepts from the two metamodels, and defining well-
formedness conditions.

To support persistent cell states, the State Seq. attribute needs linking to the state diagram State, so that both contain 
the same data details. The State is also of the same Type as the associated Place. This can be expressed both by structural 
meta-associations, and by the well-formedness condition that the name (from MOF NamedElement) of the state diagram is 
the same as the Name of its associated Place.

To support the use of the state-diagram State in determining the firing of a PNTransition, the Condition for firing must 
conjoin any Petri net Condition with a value which is true only if the state diagram exit event, with the same name as the 
arc from the relevant Place to the relevant Transition, is generated. The complementary action, resulting from production of 
a new Petri net token, is to generate an entry event with matching name on the state diagram associated with the target
Place, so that the new token starts in the relevant state diagram State.

The combined metamodel supports the cell division and differentiation DSL, in which states and places are named with 
biologically-meaningful terms. The attributes of the state, which come from the class type of the relevant Petri net Place 
via the token (or cell), will include attributes defining the probability of transition between (named) states and places, 
and a probability modifier that can be used to modify Petri-net transition probabilities for this specific cell (token), to 
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Fig. 10. Relevant extract of the StateMachine concepts from the OMG’s UML 2.4.1 metamodel [16]. A StateMachine comprises named States and 
named Transitions. A Trigger relates states and transitions. See text for a note on the abstract naming classes, which reference the kernel package 
of the UML metamodel [16].

Fig. 11. The annotation definitions from the HLPNG metamodel, extended to define a temporary data store on TransitionNode as an Attribute (see 
[18]). State Seq. takes its type from that of the associated PlaceNode (see text).

represent mutation effects. The triggering semantics conforms to the definition of the UML state chart trigger (defined in 
the communications sub-package [16]).

The cell division and differentiation DSL now forms the basis for a traceable simulator development. The abstract models 
in the DSL were easily understood by all the collaborators, and have been checked for biological accuracy by the collabora-
tors, and confirmed fit for purpose; the latter has been demonstrated by development of a simulator, which is outside of 
the scope of this paper.

6. Conclusions

We have given an overview of metamodelling, concentrating on examples and key lessons for grammar researchers. 
In particular, we have tried to highlight the key differences between building a language via grammars, and building a 
language via metamodels. In practice, this involves different technology choices, leading to different implications. Metamod-
elling supports definition of languages through use of graph concepts and constructs; grammars are grounded in the use of 
tree concepts and constructs. With metamodelling, the unification power of modelling is fundamental: everything (including 
models and metamodels) can be treated as models, thus allowing engineers to use and reuse tools and infrastructure for 
multiple purposes. Eclipse is a good example of such flexible and reusable infrastructure. The downside of metamodelling is 
its hidden complexity: behind every model, there may be a complex metamodel, but also complex metamodelling infrastruc-
ture, which can make it difficult to understand how models have been implemented, but also how models and metamodels 
should change over time. Nevertheless, the power of metamodelling and its infrastructure can lead to practical automation 
of numerous repetitive tasks, using generic and standardised tools, and can easily allow implementation of different visual 
and textual concrete syntaxes for the same abstract syntax. In practice, the distinctions between metamodelling, grammars, 
modelware and grammarware are blurring, and it will be increasingly possible in the future to use said tools and language 
workbenches collaboratively to solve language engineering problems.
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