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An Algorithm for Layout Preservation
in Refactoring Transformations

Maartje de Jonge, Eelco Visser

Dept. of Software Technology, Delft University of Technology, The Netherlands,
m.dejonge@tudelft.nl, visser@acm.org

Abstract. Transformations and semantic analysis for source-to-source transfor-
mations such as refactorings are most effectively implemented using an abstract
representation of the source code. An intrinsic limitation of transformation tech-
niques based on abstract syntax trees is the loss of layout, i.e. comments and
whitespace. This is especially relevant in the context of refactorings, which pro-
duce source code for human consumption. In this paper, we present an algorithm
for fully automatic source code reconstruction for source-to-source transforma-
tions. The algorithm preserves the layout and comments of the unaffected parts
and reconstructs the indentation of the affected parts, using a set of clearly defined
heuristic rules to handle comments.

1 Introduction

The successful development of new languages is currently hindered by the high cost of
tool building. Developers are accustomed to the integrated development environments
(IDEs) that exist for general purpose languages, and expect the same services for new
languages. For the development of Domain Specific Languages (DSLs) this require-
ment is a particular problem, since these languages are often developed with fewer
resources than general purpose languages. Language workbenches aim at reducing that
effort by facilitating efficient development of IDE support for software languages [9].
The Spoofax language workbench [11] generates a complete implementation of an edi-
tor plugin with common syntactic services based on the syntax definition of a language
in SDF [23]. Services that require semantic analysis and/or transformation are imple-
mented in the Stratego transformation language [3]. We are extending Spoofax with a
framework for the implementation of refactorings.

Refactorings are transformations applied to the source code of a program. Source
code has a formal linguistic structure [6] defined by the programming language in which
it is written, which includes identifiers, keywords, and lexical tokens. Whitespace and
comments form the documentary structure [6] of the program that is not formally part
of the linguistic structure, but determines the visual appearance of the code, which is
essential for readability. A fundamental problem for refactoring tools is the informal
connection between linguistic and documentary structure.

Refactorings transform the formal structure of a program and are specified on the
abstract syntax tree (AST) representation of the source code, also used in the compiler
for the language. Compilers translate source code from a high-level programming lan-
guage to a lower level language (e.g., assembly language or machine code), which is
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intended for consumption by machines. In the context of compilation, the layout of the
output is irrelevant. Thus, compiler architectures typically abstract over layout. Com-
ments and whitespace are discarded during parsing and are not stored in the AST.

In the case of refactoring, the result of the transformation is intended for human
consumption. Contrary to computers, humans consider comments and layout important
for readability. Comments explain the purpose of code fragments in natural language,
while indentation visualizes the hierarchical structure of the program. Extra whitespace
helps to clarify the connections between code blocks. A refactoring tool that loses all
comments and changes the original appearance of the source code completely, is not
useful in practice.

The loss of comments and layout is an intrinsic problem of AST-based transfor-
mation techniques when they are applied to refactorings. To address the concern of
layout preservation, these techniques use layout-sensitive pretty-printing to construct
the textual representation [12,13,15,17,20]. Layout is stored in the AST, either in the
form of special layout nodes or in the form of tree annotations. After the transforma-
tion, the new source code is reconstructed entirely by unparsing (or pretty-printing) of
the transformed AST. This approach is promising because it uses language independent
techniques. However, preservation of layout is still problematic. Known limitations are
imperfections in the whitespace surrounding the affected parts (indentation and inter-
token layout), and the handling of comments, which may end up in the wrong locations.
The cause of these limitations lies in the orthogonality of the linguistic and documen-
tary structure; projecting documentary structure onto linguistic structure loses crucial
information (Van De Vanter [6]).

In this paper, we address the limitations of existing approaches to layout preser-
vation with an approach based on automated text patching. A text patch is an incre-
mental modification of the original text, which can consist of a deletion, insertion or
replacement of a text fragment at a given location. The patches are computed automat-
ically by comparing the terms in the transformed tree, with their original term in the
tree before the transformation. The changes in the abstract terms are translated to text
patches, based on origin tracking information, which relates transformed terms to origi-
nal terms, and original terms to text positions [22]. A layout adjustment strategy corrects
the whitespace at the beginning and end of the changed parts, and migrates comments
so that they remain associated with the linguistic structures to which they refer. The lay-
out adjustment strategy uses explicit, separately specified layout handling rules that are
language independent. Automated text patching offers more flexibility regarding layout
handling compared to the pretty-print approach. At the same time, the layout handling
is language generic and fully automatic, allowing the refactoring developer to abstract
from layout-specific issues.
The paper provides the following contributions:

– A formal analysis of the layout preservation problem, including correctness and
preservation proofs for the reconstruction algorithm;

– A set of clearly defined heuristic rules to determine the connection of layout with
the linguistic structure;

– An algorithm that reconstructs the source code when the underlying AST is changed.
The algorithm maximally preserves the whitespace and comments of the program
text.
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We start with a formalization of the problem of layout preservation. Origin tracking is
introduced in Section 3. Section 4 explains the basic reconstruction algorithm, refined
with layout adjustment and comment heuristics in Section 5. Finally, in Section 6 we
report on experimental results.

2 Layout Preservation in Refactoring

Refactorings are behavior-preserving source-to-source transformations with the objec-
tive to ‘improve the design of existing code’ [8]. Although it is possible to refactor
manually, tool support reduces evolution costs by automating error-prone and tedious
tasks. Refactoring tools automatically apply modifications to the source code, attempt-
ing to preserve the original layout, which is not trivial to accomplish.

entity User {
name : String

//account info

pwd : String //6ch

user : String

expire : Date
}

/*Blog info*/
entity Blog { ... }

entity User {
name : String
account : Account
expire : Date

}

entity Account {
//account info
pwd : String //6ch
user : String

}

/*Blog info*/
entity Blog { ... }

Fig. 1. Textual transformation

2.1 Example

We discuss the problems related to layout preservation using an example in WebDSL, a
domain specific language for web applications [24]. Extract-entity is a refactoring im-
plemented for WebDSL, Figure 1 shows the textual transformation. The required source
code modifications are non trivial. A new entity (Account) is created from the selected
properties, and inserted after the User entity. The selected properties are replaced by a
new property that refers to the extracted entity. Comments remain attached to the code
structures to which they refer. Thus, the comments in the selected region are moved
jointly with the selected properties. Furthermore, the comment /*Blog Info*/ still
precedes the Blog entity. The layout of the affected parts is adjusted to conform to the
style used in the rest of the file. In particular, indentation and a separating empty line
are added to the inserted entity fragment.

3
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[Entity(
"User"

, [ Prop("name", "String")
, Prop("pwd", "String")
, Prop("user", "String")
, Prop("expire", "Date")])

,Entity("Blog", [...])]

Fig. 2. Abstract syntax

Figure 2 displays the abstract syntax of the program
fragment. Abstract syntax trees represent the formal struc-
ture of the program, abstracting from comments and lay-
out. Automatic refactorings are typically defined on ab-
stract syntax trees; the structural representation of the pro-
gram is necessary to reliably perform the analyses and
transformations needed for correct application. Moreover,
abstracting from the arbitrary layout of the source code
simplifies the specification of the refactoring.

2.2 Problem Analysis

The refactoring transformation applied to the AST results in a modified abstract syntax
tree. The AST modifications must be propagated to the concrete source text in order to
restore the consistency between the concrete and abstract representation.

Fig. 3. Unparsing

Figure 3 illustrates the idea. S and T denote the con-
crete and the abstract representation of the program, the
PARSE function maps the concrete representation into the
abstract representation, while TRANSF applies the trans-
formation to the abstract syntax tree. To construct the tex-
tual representation of the transformed AST, an UNPARSE
function must be implemented that maps abstract terms to
strings.

The PARSE function is surjective, so for each well-
formed abstract syntax term t, there exists at least one
string that forms a textual representation of t. An UNPARSE function can be defined that
constructs such a string [21]. The PARSE function is not injective; strings with the same
linguistic structure but different layout are mapped to the same abstract structure, that is
∃s : UNPARSE(PARSE(s)) 6= s. It follows that layout preservation can not be achieved
by a function that only takes the abstract syntax as input, without having access to the
original source text.

In the context of refactoring, it is required that the layout of the original text is
preserved. A text reconstruction function that maps the abstract syntax tree to a concrete
representation must take the original text into account to preserve the layout (Figure 4).
We define two criteria for text reconstruction:
Correctness. PARSE(CONSTRTEXT(TRANSF(PARSE(s)))) = TRANSF(PARSE(s))
Preservation. CONSTRTEXT(PARSE(s)) = s

Fig. 4. Text reconstruction

The correctness criterion states that text reconstruction
followed by parsing is the identity function on the AST
after transformation. The preservation criterion states that
parsing followed by text reconstruction returns the origi-
nal source text. Preservation as defined above only covers
the identity transformation. Section 4 gives a more pre-
cise criterion that defines preservation in the context of
(non-trivial) transformations.

4
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The layout preservation problem falls in the wider category of view update prob-
lems. Foster et al. [7] define a semantic framework for the view update problem in
the context of tree structured data. They introduce lenses, which are bi-directional tree
transformations. In one direction (GET), lenses map a concrete tree into a simplified
abstract tree, in the other direction (PUTBACK), they map a modified abstract view, to-
gether with the original concrete tree to a correspondingly modified concrete tree. A
lens is well-behaved if and only if the GET and PUTBACK functions obey the following
laws: GET(PUTBACK(t, s)) = t and PUTBACK(GET(s), s) = s. These laws resem-
ble our correctness and preservation criterion. Indeed, the bi-directional transformation
PARSE, CONSTRUCTTEXT forms a well-behaved lens.

3 Origin Tracking

Text reconstruction implements an unparsing strategy by applying patches to the origi-
nal source code. The technique requires a mechanism to relate nodes in the transformed
tree to fragments in the source code. This section describes an infrastructure for preserv-
ing origin information. Figure 5 illustrates the internal representation of the source code.
The program structure is represented by an abstract syntax tree (AST). Each node in the
AST keeps a reference to its leftmost and rightmost token in the token stream, which
in turn keep a reference to their start and end offset in the character stream. Epsilon
productions are represented by a token for which the start- and end- offset are equal.
This architecture makes it possible to locate AST-nodes in the source text and retrieve
the corresponding text fragment. The layout structure surrounding the text fragment is
accessible via the token stream, which contains layout and comment tokens.

When the AST is transformed during refactoring, location information is automati-
cally preserved through origin tracking (Figure 6, dashed line arrows). Origin tracking
is a general technique which relates subterms in the resulting tree back to their orig-
inating term in the original tree. The rewrite engine takes care of propagating origin
information, such that nodes in the new tree point to the node from which they origi-
nate. Origin tracking is introduced by Van Deursen et al. in [22], and implemented in
Spoofax [11]. We implemented a library for retrieving origin information. The library

Fig. 5. Internal representation Fig. 6. Origin tracking
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exposes the original node, its associated source code fragment, and details about sur-
rounding layout such as indentation, separating whitespace and surrounding comments.

4 Layout Preservation for Transformed AST

In this section we describe the basic reconstruction algorithm and prove correctness and
preservation.

4.1 Formalization

We introduce a formal notation for terms in concrete and abstract syntax, which stresses
the correspondence between both representations. Given a grammar G, let SG be the
set of strings that represent a concrete syntax (sub)tree, and let TG be the set of well-
formed abstract syntax (sub)trees. We use the following notation for tree structures:
(t, [t0...tk]) ∈ TG denotes a term t ∈ TG with subterms [t0...tk] ∈ TG (ti denotes the
subterm at the ith position). Equivalently, (s, [s0...sk]) ∈ SG means a string s ∈ SG

with substrings [s0...sk] ∈ SG, so that each si represents an abstract term ti ∈ TG,
and s represents a term (t, [t0...tk]) ∈ TG. Terms are characterized by their signature,
consisting of the constructor name and the number of subterms and their sorts. When the
constructor of a term is important, it is added in superscript ((xN , [x0, ...xk])). Finally,
for list terms the notation [x0, ...xk] is used as short notation for (x[], [x0, ...xk]), leaving
out the list constructor node.

We define the following operations on SG and TG, using the subscripts S and T to
specify on which term representation the operation applies. Given a term (x, [x0...xk])
with subterm xi, then R(xi, xnew)(x) replaces the subterm at position i with a new
term xnew in term x. In case x is a list, additional operations are defined for deletion
and insertion. D(xi)(x) defines the deletion of the subterm at position i in x, while
IB(xi, xnew)(x) and IA(xi, xnew)(x) define the insertion of xnew before (IB) or after
(IA) the ith element.

Assumption 1. Let PRS : SG → TG the parse function that maps concrete terms onto
their corresponding abstract terms. PRS is a homomorphism on tree structures.

The text reconstruction algorithm translates the transformation in the abstract repre-
sentation to the corresponding transformation in the concrete representation. This trans-
lation essentially exploits the homomorphic relationship between abstract and concrete
terms. The applicability of the homomorphism assumption and techniques to overcome
exceptional cases are discussed later in this section.

Lemma. Let PRS : SG → TG the parse function, and assume PRS : SG → TG is a
homomorphism on tree structures. Then the following equations hold:

L 1. PRS ◦ RS(s′i, si)(s) = RT (PRS(s′i), PRS(si)) ◦ PRS(s)

L 2. PRS ◦ DS(s′i)(s) = DT (PRS(s′i)) ◦ PRS(s)

L 3. PRS ◦ IBS(s′i, si)(s) = IBT (PRS(s′i), PRS(si)) ◦ PRS(s)

6
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L 4. PRS ◦ IAS(s′i, si)(s) = IAT (PRS(s′i), PRS(si)) ◦ PRS(s)

Proof. This follows from the assumption that PRS is a homomorphism on tree struc-
tures.

Definition. Given the functions PRS : SG → TG, PP : TG → SG, ORTRM : TG →
TG, ORTXT : TG → SG, with PP a pretty-print function and ORTRM and ORTXT
functions that return the origin term respectively the origin source fragment of a term.
The following properties hold:

D 1. ORTRM(PRS(s)) = PRS(s)

D 2. ORTXT(PRS(s)) = s

D 3. PRS(ORTXT(ORTRM(t))) = ORTRM(t)

D 4. PRS(PP(t)) = t

D 5. PP(s) = s for all string terms s

4.2 Algorithm

We define an algorithm that reconstructs the source code after the refactoring trans-
formation (Figure 8). CONSTRUCTTEXT(node) takes an abstract syntax term as input
and constructs a string representation for this term. Three cases are distinguished; re-
construction for nodes (l. 1-5), reconstruction for lists (l. 6-11), and pretty printing in
case the origin term is missing, i.e. when a term is newly created in the transformation
(l. 12-14). We discuss those cases.

If an origin term with the same signature exists (l. 2-3), the text fragment is recon-
structed from the original text fragment, corrected for possible changes in the subterms.
The function RS(t′i, ti) : String → String subsequently replaces the substrings that
represent original subterms with substrings for the new subterms constructed by a re-
cursive call to CONSTRUCTTEXT (l. 5). The (relative) offset is used to locate the text
fragment associated to the original subterm (ORTXT(t′i)), this detail is left out of the
pseudo code.

Text reconstruction for list terms (line 6-11) implements the same idea, except that
the changes in the subterms may include insertions and deletions. The textual modi-
fications are calculated by a differencing function (DIFF) and subsequently applied to
the original list fragment (line 11). The DIFF function matches elements of the new list
with their origin term in the original list; the matched elements are returned as replace-
ments (line 25), the unmatched elements of the old list form the deletions (lines 21, 29),
while the insertions consist of the unmatched elements in the new list (lines 23, 30). It
is crucial that the elements of the new list are correctly matched with related elements
from the old list, since they automatically adopt the surrounding layout at the position
of the old term, which may contain explanatory comments.

New terms are reconstructed by pretty-printing. To preserve the layout of subterms
associated with an origin fragment, the pretty print function is applied after replacing
the subterms with their textual representation, constructed recursively (line 14).

7

SERG An Algorithm for Layout Preservation in Refactoring Transformations

TUD-SERG-2011-027 7



entity Account {
//account info
pwd : String //6c
user : String

}

Account //account info
pwd : String //6c
user : String

pwd : String

pwd String

user : String

user String

Fig. 7. Reconstruction example

The reconstruction algorithm implements a postorder traversal of the transformed
abstract syntax tree, constructing the text fragment of the visited term from the text frag-
ments of its subterms that were already constructed in the traversal. Figure 7 illustrates
the reconstruction of the account entity. The substrings printed in bold are constructed
by traversing the subterms, while the surrounding characters are either retrieved from
the origin fragment, or constructed by pretty printing.

4.3 Correctness

We prove correctness of CONSTRUCTTEXT : TG → SG (Figure 8, abbreviated as CT),
assuming that PARSE : SG → TG is a homomorphism on tree structures.

Theorem (Correctness). ∀t ∈ TG PARSE(CT(t)) = t

The proof is by induction on tree structures. We distinguish two cases for the leaf nodes,
dependent on whether an origin term exists with the same signature.

Base case (a). Let t = (tN , []) a leaf node with origin term (tN , []).
PRS(CT(t)) =line 5 PRS(ORTXT(ORTRM(t))) =D 3 ORTRM(t) = (tN , [])

Base case (b). Let (t, []) a leaf node for which no origin term exists.
PRS(CT(t)) =line13−14 PRS(PP(t)) =D 4 t

IH. PARSE(CT(ti)) = ti holds for all subterms t0 to tk of a term (t, [t0, ..., tk]).

We now proof the induction step PARSE(CT(t)) = t.

Induction step (a). Assuming the induction hypothesis, we first prove a property of text
modification operations as applied in lines 5, 11.

8
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CONSTRUCTTEXT(term) � Abbreviated as CT

1 if
2 (tN , [t0, ...tk])← term

3 (t′N , [t′0, ...t′k])← ORTRM(term)

4 then � Term with origin info
5 return RS(ORTXT(t ′

0 ), CT(t0)) ◦ · · · ◦RS(ORTXT(t′k), CT(tk))

◦ ORTXT(ORTRM(term))

6 else if
7 [t0, ...tk]← term

8 [t′0, ...t′j ]← ORTRM(term)

9 then � List term
10 [MOD0, ...MODz ]← DIFF(ORTRM(term), term)

11 return MOD0 ◦ · · · ◦MODz(ORTXT(ORTRM(term)))

12 else � New constructed term
13 (tN , [t0, ...tk])← term

14 return PP ◦ RT (t0, CT(t0)) ◦ · · · ◦ RT (tk, CT(tk))(tN )

DIFF(originLst, newLst)

15 diffs, unmatched ← []

16 for each el in newLst do
17 if ORTRM(el) ∈ originLst then
18 el ′ ← ORTRM(el)

19 if PREFIX(el ′, originLst) 6= [] then
20 deletedElems ← PREFIX(el ′, originLst)

21 diffs ← DS(ORTXT(deletedElems)) :: diffs

22 if unmatched 6= [] then
23 diffs ← IBS(ORTXT(el′), CT(unmatched)) :: diffs

24 unmatched ← []

25 diffs ← RS(ORTXT(el′), CT(el)) :: diffs

26 originLst ← SUFFIX(el ′, originLst)

27 else
28 unmatched ← unmatched ::: [el ]

29 diffs ← DS(ORTXT(originLst)) :: diffs

30 diffs ← IAS(ORTXT(originLst), CT(unmatched)) :: diffs

31 return REVERSE(diffs)

Fig. 8. Pseudo code reconstruction algorithm

p 1. Given a concrete syntax term (s, [...ORTXT(t′i)...]). The following holds for mod-
ification operations MOD ∈ R, IB, IA, D.
PRS ◦MODS(ORTXT(t′i), CT(ti))(s) =L 1,L 2,L 3,L 4

MODT (PRS ◦ ORTXT(t′i), PRS ◦ CT(ti)) ◦ PRS(s) =D 3,IH

MODT (t′i, ti) ◦ PRS(s)

We prove the induction step for constructor terms (tN ) below, the proof for list terms
follows the same logic. Let t = (tN , [t0...tk]) a term with origin term t′ = (t′N , [t′0...t

′
k]).

PRS ◦ CT(t) =line 5−6

9
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PRS ◦ RS(ORTXT(t′0), CT(t0))... ◦ RS(ORTXT(t′k), CT(tk)) ◦ ORTXT(t′) =p 1

RT (t′0, t0) ◦ ... ◦ RT (t′k, tk) ◦ PRS ◦ ORTXT(t′) = D 3
RT (t′0, t0) ◦ ... ◦ RT (t′k, tk)(t′N , [t′0...t

′
k]) = (tN , [t0...tk]) = t

Induction step (b). First, we prove a property for pretty printing.

p 2. PRS ◦ PP ◦ RT (t′i, ti)(t) =D 4

RT (t′i, ti)(t) =D 4

RT (PRS ◦ PP(t′i), PRS ◦ PP(ti)) ◦ PRS ◦ PP(t) =L 1

PRS ◦ RS(PP(t′i), PP(ti)) ◦ PP(t)

Let (t, [t0...tk]) a node for which no origin term exists.
PRS ◦ CT(t) =line 14

PRS ◦ PP ◦ RT (t0, CT(t0)) ◦ ... ◦ RT (tk, CT(tk))(t) =p 2

PRS ◦ RS(PP(t0), PP ◦ CT(t0)) ◦ ... ◦ RS(PP(tk), PP ◦ CT(tk)) ◦ PP(t) =L 1,D 5

RT (PRS◦PP(t0), PRS◦CT(t0))◦...◦RT (PRS◦PP(tk), PRS◦CT(tk))◦PRS◦PP(t) =D 4,IH

RT (t0, t0) ◦ ... ◦ RT (tk, tk)(t) =D 4 t

Applicability The correctness proof depends on the assumption that parsing is a homo-
morphism on tree structures, we discuss two common exceptions. Tree structures in the
concrete syntax representation can be ambiguous, in which case the parse result is deter-
mined by disambiguation rules. Syntactic ambiguities invalidate the homomorphic na-
ture of the parse function. For instance, “2∗4+5”, is parsed as (tPlus, [(tMult, [2, 4]), 5]),
while the alternate parse ((tMult, [2, (tPlus, [4, 5])])) is rejected. Thus, bottom up text
reconstruction fails to produce the correct code fragment for (tMult, [2, (tPlus, [4, 5])])
in case (tPlus, [4, 5]) is reconstructed as “4+5” instead of “(4+5)”. To guarantee cor-
rectness, a preprocessor step is required that adds parentheses at the necessary places
in the tree, where text reconstruction does not yield an expression between parentheses.
The rules for parentheses insertion can be derived from the syntax definition [21]. This
approach is taken in GPP [4], the generic pretty printer that is used in Spoofax. Another
exception with respect to the homomorphism property concerns separation between list
elements. When a list element is inserted (or deleted), it must be inserted (deleted) in-
clusive a possible separator, which is determined by the parent node. The separation is
retrieved from the original source text in case the origin list has two or more elements,
otherwise its looked up in the pretty-print table, based on te signature of the parent term.

4.4 Layout Preservation

Abstract syntax terms in general have multiple textual representations. These represen-
tations differ in the use of layout between the linguistic elements. In addition, small
differences may occur in the linguistic elements; typically the use of braces is optional
in some cases. We introduce the notion of formatting that covers these differences. Then
we prove that the text reconstruction algorithm preserves formatting for terms that are
not changed in the transformation, although they may have changes in their subterms.

Definition. Given (s, [s0, ...sk]) ∈ SG. The formatting of s is defined as the list con-
sisting of the substring preceding s0, the substrings that appear between the subterms
s0, ...sk, plus the substring succeeding sk

10
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Theorem (Maximal Layout Preservation). Let t ∈ TG with origin term ORTRM(t) ∈
TG. If t and ORTRM(t) have the same signature, then CT(t) and ORTXT(ORTRM(t))
have the same formatting.

Proof. Let (tN , [t0...tk]) a term with origin term (t′N , [t′0...t
′
k]), then CT(t) =

RS(ORTXT(t′0), CT(t0)) ◦ ... ◦ RS(ORTXT(t′k), CT(tk)) ◦ ORTXT(ORTRM(t)).
Since RS only affects the substrings that represent the child nodes, the formatting of
the parent string is left intact. For list terms: Let t = [t0...tk] a list with origin term
ORTRM(t) = [t0...tl], then CT(t) = MODt′0 ◦ ... ◦ MODt′l ◦ ORTXT(ORTRM(t))
MODt′i ∈ {RS , DS , IBS , IAS}. By definition, the modification functions affect the
substrings representing the child nodes, or insert a new substring. In both cases the
formatting of the parent string is preserved.

5 Whitespace Adjustment and Comment Migration

The algorithm of Figure 8 preserves the layout of the unaffected regions, but fails to
manage spacing and comments at the frontier between the changed parts and the un-
changed parts. Figure 9 shows the result of applying the algorithm to the refactoring
described in section 2 (Figure 1). Comments end up at the wrong location (//account
info, /*Blog info*/), the whitespace separation around the account property and
Account entity is not in accordance with the separation in the original text, and the
indentation of the Account entity is disorderly.

entity User {
name : String
//account info

account : Account expire : Date
}

/*Blog info*/
entity Account {
password : String //6 chars

username : String
}entity Blog { ... }

Fig. 9. Layout deviation

IBADJUSTED(told, tnew)

1 text ← CT(tnew )

2 text ← REMOVEINDENT(text)

3 text ← ADDINDENT(

text ,

ORIGININDENT(told ))

4 text ← CONCATSTRINGS([

text ,

ORSEPARATION(told ) ])

5 offset ← OFFSETWITHLO(told )

6 return IBS(offset , text)

Fig. 10. Layout adjustment function

The algorithm in Figure 8 translates AST-changes to modifications on code struc-
tures, but ignores the layout that surrounds these structures. To overcome this shortcom-
ing, we refine the implementation of the algorithm so that whitespace and comments are
migrated together with their associated code structures. This is implemented by using
the layout-sensitive versions of the origin tracking functions to access origin fragments
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/**
* Processes income data and displays statistics #1
*/

public static void displayStatistics(Scanner input) {
//Initialize variables #2a
int count = 0; // Number of values #3a
double total = 0; // Sum of all incomes #3b

//Process input values until EOF #2b
System.out.println("Enter income values");
while (input.hasNextDouble()) {

double income = input.nextDouble();
//System.out.println("processing: " + income); #4
if(income>=0){

count++; // Keep track of count
total += income; // and total income #5

}
}

//Display statistics #2c
double average = calcAverage(count, /*sum*/ total); #6
System.out.println("Number of values = " + count);
System.out.println("Average = " + average);

}

Fig. 11. Comment styles

and locate textual changes. Language generic layout adjustment functions are imple-
mented that correct the whitespace of reconstructed fragments, so that the spacing of
the surrounding code is adopted. In particular, an inserted fragment is indented and sep-
arated according to the layout of the adjacent nodes. Figure 10 shows the layout adjust-
ment steps for IBS . First, the text is reconstructed with its associated comments. Then,
the existing separation and (start)indentation is removed, leaving the nesting indenta-
tion intact. Subsequently, the start indentation at the insert location is retrieved from the
adjacent term (told) and appended to all lines. Finally, separation is added (retrieved by
inspecting the layout surrounding told) to separate the node from its successor.

5.1 Comment Heuristics

Comment migration requires a proper interpretation of how comments attach to the
linguistic structure, which is problematic because of the informal nature of comments.
The use of comments differs, depending on style conventions for a particular language
and the personal preference of the programmer. Van De Vanter [6] gives a detailed
analysis.

Figure 11 illustrates the use of comments with different style conventions used in
combination. Fragment #1 is a block comment that explains the purpose of the accom-
panying method. The comment resides in front of its structural referent. This is also
the case for the comments in #2a,b,c. However, these comments do not attach to a sin-
gle structure element, but instead relate to a group of statements. The blank lines that
surround these grouped statements are essential in understanding the scope of the com-
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ments. Contrary to the previous examples, the line comment in #3 points backwards to
the preceding statement. #6 provides an example of a comment in the context of list
elements separated by a comma. In this case, the location of the comma determines
whether the comment points forward or backward. The commented-out println state-
ment in #4 does not have a structural referent. It can best be seen as lying between the
surrounding code elements. Finally, #5 illustrates a single comment that is spread over
two lines. A human reader will recognize it as a single comment, although it is struc-
turally split in two separate parts. In this case, the vertical alignment hints at the fact
that both parts belong together.

Figure 11 makes clear why attaching comments to AST nodes is problematic. The
connection of comments with AST-nodes only becomes clear when taking into account
the full documentary structure, including newlines, indentation and separator tokens.
Comments can point forward, as well as backward and, purely based on analysis of the
tree structure, it is impossible to decide which one is the case. Even more problematic
are #2 and #4; both comment lines lack an explicit referent in terms of a single AST
node. The former refers to a sublist, while the latter falls between the surrounding nodes.

Text reconstruction allows for a more flexible approach towards the interpretation
of comments. Instead of a fixed mapping between comments and AST nodes, heuristic
rules are defined that interpret the documentary structure around the moved AST-part.
Comment heuristics are defined as layout patterns using newlines, indentation, and sep-
arators as building blocks (Figure 12). If a pattern applies to a given node (or group of
nodes), the node is considered as the structural referent of the comment(s) that take part
in the pattern. The binding heuristics have the following effect on the textual transfor-
mation; if a node / group of nodes is (re)moved, all adjacent comments that bind to the
node(s) are (re)moved as well. Adjacent comments that do not bind, stay at their orig-
inal position in the source code. Comments that lie inside the region of the migrated
node(s) automatically migrate jointly.

The patterns in Figure 12 handle the majority of comment styles correctly. The com-
ment styles in Figure 11 are recognized by the patterns, with the exception of vertical
alignment (#5), which is not detected. Preceding(1) binds #1 to the displayStatistics
method, and #2a,b,c to the statement groups they refer to. #3 is interpreted by Succeed-
ing(1). None of the patterns applies to #4, which indeed neither binds to the preceding
nor to the succeeding node. The comment in #6 is associated with the succeeding node
by application of Preceding(2). Finally, #5 is associated to its preceding statement, but
not recognized as a single comment spread over two lines.

Heuristic rules will never handle all cases correctly; ultimately, it requires under-
standing of the natural language to decide the meaning of the comment and how it
relates to the program structure. While our experience so far suggests that the heuris-
tics are adequate, further experience with other languages, other refactorings, and other
code bases is needed to determine whether these rules are sufficient.

6 Evaluation

We implemented the layout preservation algorithm in Spoofax [11], the sources of the
library are available on-line [2]. We successfully applied the algorithm to renaming,

13

SERG An Algorithm for Layout Preservation in Refactoring Transformations

TUD-SERG-2011-027 13



Preceding(1) :

<newline OR lower-indent><newline>
<comments><newline>
<nodes><newline>
<newline OR lower-indent>

Preceding(2) :

<separator><comments><node>

Succeeding(1) :

<node><comments><newline>

Succeeding(2) :

<node><comments><separator>

Succeeding(3) :

<node><separator><comments><newline>

{

/*..*/

int i

int j

}

int i, /*..*/ int j

int i /*..*/

int j

int i /*..*/ , int j

int i, /*..*/

int j

Fig. 12. Comment patterns

extraction and inlining refactorings defined in WebDSL [24], MoBL [10] and Strat-
ego [3]. In addition, we applied the algorithm to the Java refactorings mentioned in this
section. For future work we will implement more refactorings and we will experiment
with different languages and layout conventions.

Van De Vanter [6] points out the importance of the documentary structure for the
comprehensibility and maintainability of source code. The paper gives a detailed analy-
sis of the documentary structure consisting of indentation, line breaks, extra spaces and
comments. The paper sketches the prerequisites for a better layout handling by trans-
formation tools. We use the examples and requirements pointed out by Van De Vanter
to provide a qualitative evaluation of our approach.

It is impossible for automatic tools to handle all layout correctly. After all, textual
comments are written for human beings. Ultimately, comments can only be related to
the code by understanding natural language. Therefore, instead of trying to prove that
our tool handles layout correctly, we show that our approach meets practical standards
for refactoring tools. We compare the layout handling of our technique with the refactor-
ing support in Eclipse Java Development Tools (JDT), which is widely used in practice.
We use a test set consisting of Java fragments with different layout styles. This set in-
cludes test cases for indentation and separating whitespace, as well as test cases for
different comment styles, covering all comment styles discussed by Van De Vanter [6]
and illustrated in Figure 12.

The results are summarized in Table 1; +means that the layout is accurately handled,
-/+ indicates some minor issues, while - is used in case more serious defects were
found. A minor issue is reported when the layout is acceptable but doen not precisely
follows the style used in the rest of the code, a serious defect is reported in case the
layout is untidy or when comments are lost. The results show that our approach handles
layout adequately in most cases. Different comment styles are supported (1-15), and
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Cat. Description E CT
1 P1 Inline on method preceded by block comment + +
2 Inline on method preceded by a commented-out method - +
3 Move method preceded by multiple comments + +
4 Convert-to-field on the first statement of a group preceded by a com-

ment
- +

5 Convert-to-field on statement below commented-out line - +

6 P2 Change method signature + +

7 S1 Extract method, last stm ends with line comments + +
8 Extract method, preceding stm ends with line comments + +
9 Convert-to-field, decl with succeeding line comments - +

10 S2 Change method signature + +

11 S3 Change method signature -/+ -/+

12 Inside Extract method with comments in body + +
13 Inline method with comments in body + +

14 Selection Extract method, preceding comments in selection + +
15 Extract method, preceding comments outside selection + +

16 Indent Extract method, code style follows standards + +
17 Extract method, code style deviates from standards - -/+

18 Sep. ws Extract method, code style follows standards + +
19 Extract method, code style deviates from standards -/+ +

20 Format Extract method, standard code style + +
21 Extract method, code style deviates from standard -/+ -/+

22 V. align Renaming so that v. alignment of “=” is spoiled - -
23 Renaming so that v. alignment of comments is spoiled - -

E : Eclipse Helios (3.6.2)

CT: Text Construction

Table 1. Layout Preservation Results

the adjustment of whitespace gives acceptable results (16-19). 17, 19, and 23 show that
variations in code style only led to some minor issues. For example in 17, the indent
of the new inserted method correctly follows the indentation of the adjacent methods,
but the indentation in the body follows the style defined in the pretty-print definition.
Vertical alignment (22, 23) is not restored. A possible improvement is to restore vertical
alignment in a separate phase, using a post processor.

Eclipse does not implement the same refined heuristic patterns as our technique,
which explains the deviating results in 2, 4, and 5. In those three cases, the comments
were incorrectly associated with the moved code structures and, consequently, did not
remain at their original location. In all three cases the comment did not show up in the
modified source code. In 9, the comment was not migrated to the new inserted field,
although it was (correctly) associated to the selected variable declaration. The reason is
that the relation between the inserted field and the deleted local variable is not set. In
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our implementation, the origin tracking mechanism keeps track of this relation. Eclipse
uses editor settings to adjust the whitespace surrounding new inserted fragments, which
works well under the condition that the file being edit adopts these settings.

We implemented a general solution for layout preservation with the objective to
support the implementation of refactorings for new (domain specific) languages. Using
our approach, the layout preservation is not a concern for the refactoring programmer
but it is automatically provided by the reconstruction algorithm. The evaluation indi-
cates that our generic approach produces results of comparable and in some cases even
better quality then refactorings implemented in current IDEs.

7 Related Work

We implemented an algorithm for layout preservation in refactoring transformations.
Instead of trying to construct the entire source code from the AST, the algorithm uses
the original source text to construct the text for the transformed AST. Origin tracking
is used to relate terms in the AST with their original code fragments, while internal
changes are propagated and applied as text patches. As a result, the original layout is
preserved for the unaffected parts of the program. The main challenge is the treatment
of spacing and comments on the frontier between the changed and the unchanged code.
Layout adjustment functions correct the whitespace of reconstructed fragments, so that
the spacing of the surrounding code is adopted. Comments are migrated according to
their intent. We define heuristic patterns for comment binding, that interpret the docu-
mentary structure near the node. The comment patterns are flexible in the sense that they
do not assume a one-to-one relation between comments and AST nodes. The heuristic
rules are language generic and cover the layout styles commonly seen in practice.

7.1 AST Approaches

Various attempts have been made to address the concern of appearance preservation by
adding layout information to the AST. For a complete reconstruction, all characters that
do not take part in the linguistic structure should be stored. This includes whitespace,
comments and (redundant) parentheses. The modified source code is reconstructed from
the transformed AST by layout-aware pretty printing [5].

Van den Brand and Vinju [20] use full parse trees in combination with rewrite rules
in concrete syntax. The rewrite engine is adapted to deal with the extra layout branches,
by using the assumption that any two layout nodes always match. The approach de-
scribed in [17] also relies on extra layout branches. Instead of adapting the rewrite
engine, the authors propose an automated migration of the transformation rules to take
care of the layout branches. Layout annotations are used in [13] (Kort, Lämmel), while
the RefactorErl tool [12] stores the layout information in a semantic graph.

All approaches based on extended ASTs succeed, to a certain extent, in preserving
the original layout. In most approaches, layout is preserved for the unaffected parts,
but the reconstruction of the affected parts has limitations. The implicit assumption is
that the documentary structure can be mapped satisfactorily onto abstract syntax trees.
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However, the mapping of layout elements to AST nodes has intrinsic limitations. At-
taching comments to preceding (or succeeding) AST nodes is a simplification that fails
in cases when a comment is not associated with a single AST node, as is shown in
examples provided by Van De Vanter [6]. Another shortcoming is related to indenta-
tion and whitespace separation at the beginning and end of changed parts. Migrating
whitespace is not sufficient since the indentation at the new position may differ from
the indentation at the old position, due to a different nesting level. Furthermore, newly
constructed structures should be inserted with indentation and separating whitespace.

7.2 HaRe

HaRe [14,16] is a refactoring tool for Haskell that preserves layout. The program is
internally represented by the Abstract Syntax Tree and the token stream, which are
linked by source location information. Layout preservation is performed explicitly in
the transformation steps, which process the token stream and the AST in parallel. After
the transformation, the source code is extracted from the modified token stream.

Haskell programs can be written in layout-sensitive style for which the meaning of a
syntax phrase may depend on its layout. For this reason, it is essential for the refactoring
tool not to violate the layout rules when transforming the program. HaRe implements a
layout adjustment algorithm to keep the layout correct. The algorithm ensures that the
meaning of the code fragments is not changed, which does not necessarily mean that
the code is as much as possible like the original one in appearance. HaRe uses heuristic
rules to move/remove comments together with the associated program structures. These
heuristics include rules for comments that precede a program structure and end-of-line
comments that follow after a structure.

Similar to our approach, HaRe uses the token stream to apply layout analysis and
to extract source code fragments. The main difference is that HaRe modifies the token
stream during the transformation, while we reconstruct the source code afterwards, us-
ing origin-tracking to access the original source. The requirement to change the AST
and token stream in parallel makes it harder to implement new transformations and
requires an extension of the rewrite machinery specific for source-to-source transfor-
mations. We clearly separate layout handling from rewriting, which enables us to use
the existing compiler infrastructure for refactoring transformations.

7.3 Eclipse

The Java Developer Toolkit (JDT) used in Eclipse offers an infrastructure for imple-
menting refactorings [1]. Refactoring transformations are specified with replace, insert
and remove operations on AST nodes, which are used afterwards to calculate the cor-
responding textual changes. Common to our approach, the replace, insert and remove
operations on AST nodes are translated to textual modifications of the source code.
However, instead of being restricted to the replace, delete and insert operations on AST
nodes, we compute the primitive AST modifications by applying a tree differencing
algorithm to the transformed abstract syntax tree. As a result, the transformation and
text reconstruction are clearly separated. Thanks to this separation of concerns, we can
specify refactorings in a specialized transformation language (Stratego).
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7.4 Text Patching

The LS/2000 system [19,18] is a design-recovery and transformation system, imple-
mented in TXL. LS/2000 is successfully applied for ”year 2000” remediation of legacy
COBOL, PL/I, and RPG applications. The system implements an approach based on au-
tomated text patching. The differences between the original code and the transformed
code are calculated with a standard differencing algorithm, operating on the token
stream. The deviating text regions are merged back into the original text.

The token based differencing successfully captured changes that were relatively
small. For millennium bug renovations, typical changes were the local insertion of a
few lines of code. When the changes are large, or involve code movement, standard
differencing algorithms do not work well [18]. We implemented a tree differencing al-
gorithm that reconstructs moved code fragments by using origin tracking, furthermore,
fragments with nested changes are reconstructed by recursion on subtrees.

7.5 Lenses

Foster et al. [7] implement a generic framework for synchronizing tree-structured data.
Their approach to the view update problem is based on compoundable bi-directional
transformations, called lenses. In the GET direction, the abstract view is created from
the concrete view, projecting away some information; in the PUTBACK direction, the
modified abstract view is mapped to a concrete representation, restoring the projected
elements from the original concrete representation. The lens laws, which resemble our
preservation and correctness criteria, impose some constraints on the behavior of the
lens. Given a certain GET function, in general, many different PUTBACK functions can
be defined. The real problem is to define a PUTBACK function that does what is required
for a given situation. We define CONSTRUCTTEXT as a PUTBACK function for parsing,
and prove that it fulfills the correctness and (maximal) layout preservation criteria.

Our approach is based on origin tracking as a mechanism to relate abstract terms
with their corresponding concrete representation. Origin tracking makes it possible to
locate moved subtrees in the original text. Furthermore, lists are compared using the ori-
gin relation to match corresponding elements. In contrast, lenses use the concrete rep-
resentation as an input parameter to the PUTBACK function. As a consequence, details
are lost about how subterms relate to text fragments. This seems especially problematic
in case terms have nested changes, or when they are moved to another location in the
tree. We defined heuristic rules for comment binding and layout adjustment functions
to correct the spacing surrounding the changed parts. Layout adjustment and comment
migration might be hard to express in the lenses framework. Foster et al. [7] mention
the expressiveness of their approach as an open question. Layout preservation seems a
challenging problem in this respect.

8 Conclusion

Refactorings are source-to-source transformations that help programmers to improve
the structure of their code. With the popularity and ubiquity of IDEs for mainstream
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general purpose languages, software developers come to expect rich editor support in-
cluding refactorings also for domain-specific software languages. Since the effort that
can be spent on implementations of DSLs is often significantly smaller than the effort
that is spent on (IDEs for) languages such as Java, this requires tool support for the
high-level definition of refactorings for new (domain-specific) software languages.

An important requirement for the acceptability of refactorings for daily use is their
faithful preservation of the layout of programs. Precisely this aspect, as trivial as it often
seems compared to the actual refactoring transformation, has confounded meta-tool
developers. The result is typically that the definitions of refactorings are contaminated
with code for layout preservation. The lack of a generic solution for layout preservation
has held back widespread development of refactoring tools for general purpose and
domain-specific languages.

In this paper, we have presented an approach to layout preservation that separates
layout preservation from the structural definition of refactorings, allowing the refac-
toring developer to concentrate on the structural transformation, leaving layout recon-
struction to a generic library. The library computes text patches based on the differences
between the old and the new abstract syntax tree, relying on origin tracking to identify
the origins of subtrees. The approach applies layout conventions for indentation and
vertical layout (blank lines) from the old code to newly created pieces of code; heuristic
rules are defined for comment migration.

The separation of layout preservation from transformation enables the implemen-
tation of refactorings by the common meta-programmer. With this framework in place
we expect to develop a further library of generic refactorings that will further simplify
the development of refactorings for a wide range of software languages.
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