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We propose a novel approach to the view-update problem for tree-structured data: a domain-specific
programming language in which all expressions denote bidirectional transformations on trees. In
one direction, these transformations—dubbed lenses—map a concrete tree into a simplified abstract
view; in the other, they map a modified abstract view, together with the original concrete tree, to
a correspondingly modified concrete tree. Our design emphasizes both robustness and ease of use,
guaranteeing strong well-behavedness and totality properties for well-typed lenses.

We begin by identifying a natural space of well-behaved bidirectional transformations over ar-
bitrary structures, studying definedness and continuity in this setting. We then instantiate this
semantic framework in the form of a collection of lens combinators that can be assembled to de-
scribe bidirectional transformations on trees. These combinators include familiar constructs from
functional programming (composition, mapping, projection, conditionals, recursion) together with
some novel primitives for manipulating trees (splitting, pruning, merging, etc.). We illustrate the
expressiveness of these combinators by developing a number of bidirectional list-processing trans-
formations as derived forms. An extended example shows how our combinators can be used to
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define a lens that translates between a native HTML representation of browser bookmarks and a
generic abstract bookmark format.
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1. INTRODUCTION

Computing is full of situations where some structure must be converted to a
different form—a view—in such a way that changes made to the view can be
reflected as updates to the original structure. This view-update problem is a
classical topic in the database literature, but has so far been little studied by
programming language researchers.

This article addresses a specific instance of the view-update problem that
arises in a larger project called Harmony [Foster et al. 2006]. Harmony is a
generic framework for synchronizing tree-structured data, a tool for propagat-
ing updates between different copies of tree-shaped data structures, possibly
stored in different formats. For example, Harmony can be used to synchronize
the bookmark files of several different Web browsers, allowing bookmarks and
bookmark folders to be added, deleted, edited, and reorganized in any browser
and propagated to the others. The ultimate aim of the project is to provide a
platform on which a Harmony programmer can quickly assemble a high-quality
synchronizer for a new type of tree-structured data stored in a standard low-
level format such as XML. Other Harmony instances currently in daily use or
under development include synchronizers for calendars (Palm DateBook, ical,
and iCalendar formats), address books, slide presentations, structured docu-
ments, and generic XML and HTML.

Views play a key role in Harmony: to synchronize structures that may be
stored in disparate concrete formats, we define a single common abstract format
and a collection of lenses that transform each concrete format into this abstract
one. For example, we can synchronize a Mozilla bookmark file with an Inter-
net Explorer bookmark file by transforming each into an abstract bookmark
structure and propagating changed information between these. Afterwards, we
need to take the updated abstract structures and reflect the corresponding up-
dates back into the original concrete structures. Thus, each lens must include
not one but two functions, one for extracting an abstract view from a concrete
one and another for putting an updated abstract view back into the original
concrete view to yield an updated concrete view. We call these the get and put-
back components, respectively. The intuition is that the mapping from concrete
to abstract is commonly some sort of projection, so the get direction involves
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getting the abstract part out of a larger concrete structure, while the putback
direction amounts to putting a new abstract part into an old concrete structure.
We show a concrete example of this process in Section 2.

The difficulty of the view-update problem springs from a fundamental ten-
sion between expressiveness and robustness. The richer we make the set of
possible transformations in the get direction, the more difficult it becomes to
define corresponding functions in the putback direction in such as way that each
lens is both well behaved, that is, its get and putback behaviors fit together in
a sensible way, and total, that is, its get and putback functions are defined on
all the inputs to which they may be applied.

To reconcile this tension, a successful approach to the view-update problem
must be carefully designed with a particular application domain in mind. The
approach described here is tuned to the kinds of projection-and-rearrangement
transformations on trees and lists that we have found useful for implementing
Harmony instances. It does not directly address some well-known difficulties
with view update in the classical setting of relational databases such as the
difficulty of “inverting” queries involving joins. (We do hope that our work will
suggest new attacks on these problems, however; a first step in this direction
is described by Bohannon et al. [2006].)

A second difficulty concerns ease of use. In general, there are many ways to
equip a given get function with a putback function to form a well-behaved and
total lens; we need some means of specifying which putback is intended that is
natural for the application domain and that does not involve onerous proof obli-
gations or checking of side conditions. We adopt a linguistic approach to this is-
sue, proposing a set of lens combinators—a small domain-specific language—in
which every expression simultaneously specifies both a get function and the cor-
responding putback. Moreover, each combinator is accompanied by a type dec-
laration, designed so that the well-behavedness and (for nonrecursive lenses)
totality of composite lens expressions can be verified by straightforward, com-
positional checks. Proving totality of recursive lenses, like ordinary recursive
programs, requires global reasoning that goes beyond types.

The first step in our formal development (Section 3) is identifying a natu-
ral mathematical space of well-behaved lenses over arbitrary data structures.
There is a good deal of territory to be explored at this semantic level. First, we
must phrase our basic definitions to allow the underlying functions in lenses
to be partial since there will in general be structures to which a given lens
cannot sensibly be applied. The sets of structures to which we do intend to ap-
ply a given lens are specified by associating it with a type of the form C � A,
where C is a set of concrete source structures and A is a set of abstract target
structures. Second, we define a notion of well-behavedness that captures our
intuitions about how the get and putback parts of a lens should behave in con-
cert. For example, if we use the get part of a lens to extract an abstract view a
from a concrete view c and then use the putback part to push the very same a
back into c, we should get c back. Third, we deploy standard tools from domain
theory to define monotonicity and continuity for lens combinators parameter-
ized on other lenses, establishing a foundation for defining lenses by recur-
sion. (Recursion is needed because the trees that our lenses manipulate may in
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general have arbitrarily deep nested structure, e.g., when they represent direc-
tory hierarchies, bookmark folders, etc.) Finally, to allow lenses to be used to
create new concrete structures rather than just updating existing ones (needed,
e.g., when new records are added to a database in the abstract view), we ad-
join a special “missing” element to the structures manipulated by lenses and
establish suitable conventions for how it is treated.

With these semantic foundations in hand, we proceed to syntax. In Sec-
tion 4, we present a group of generic lens combinators (identities, composition,
and constants) that can work with any kind of data. In Section 5, we focus
attention on tree-structured data and present several more combinators that
perform various manipulations on trees (hoisting, splitting, mapping, etc.); we
also show how to assemble these primitives, along with the generic combinators
from before, to yield some useful derived forms. Section 6 introduces another
set of generic combinators implementing various sorts of bidirectional condi-
tionals. Section 7 gives a more ambitious illustration of the expressiveness of
these combinators by implementing a number of bidirectional list-processing
transformations as derived forms, including lenses for projecting the head and
tail of a list, mapping over a list, grouping the elements of a list, concatenating
two lists, and, our most complex example, implementing a bidirectional filter
lens whose putback function performs a rather intricate weaving operation to
recombine an updated abstract list with the concrete list elements that were
filtered away by the get. This example also demonstrates the use of the rea-
soning techniques developed in Section 3 for establishing totality of recursive
lenses. Section 8 further illustrates the use of our combinators in real-world
lens programming by walking through a substantial example derived from the
Harmony bookmark synchronizer.

Section 9 presents some first steps into a somewhat different region of the
lens design space: lenses for dealing with relational data encoded as trees. We
define three more primitives, a flattening combinator that transforms a list of
(keyed) records into a bush, a pivoting combinator that can be used to promote a
key field to a higher position in the tree, and a transposing combinator related
to the outer join operation on databases. The first two combinators play an
important role in Harmony instances for relational data such as address books
encoded as XML trees.

Section 10 surveys related work and Section 11 sketches directions for future
research.

To keep things moving, we defer all proofs to an electronic appendix which
is available on the Harmony Web pages and the ACM Digital Library.

2. A SMALL EXAMPLE

Suppose our concrete tree c is a simple address book:

c =

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣∣∣∣∣
Pat �→

{∣∣∣∣Phone �→ 333-4444
URL �→ http://pat.com

∣∣∣∣
}

Chris �→
{∣∣∣∣Phone �→ 888-9999
URL �→ http://chris.org

∣∣∣∣
}
∣∣∣∣∣∣∣∣

⎫⎪⎪⎬
⎪⎪⎭
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We draw trees sideways to save space. Each set of hollow curly braces corre-
sponds to a tree node, and each “X �→ . . . ” denotes a child labeled with the
string X. The children of a node are unordered. To avoid clutter, when an edge
leads to an empty tree, we usually omit the braces, the �→ symbol, and the final
childless node, for example, “333-4444” in the previous example actually stands
for “{|333-4444 �→ {||}|}.” When trees are linearized in running text, we separate
children with commas for easier reading.

Now, suppose that we want to edit the data from this concrete tree in a yet
simpler format where each name is associated directly with a phone number.

a =
{∣∣∣∣Pat �→ 333-4444
Chris �→ 888-9999

∣∣∣∣
}

Why would we want this? Perhaps because the edits are going to be generated
by synchronizing this abstract tree with another replica of the same address
book in which no URL information is recorded. Or perhaps there is no synchro-
nizer involved and the edits are going to be performed by a human who is only
interested in phone information and doesn’t want to see URLs. Whatever the
reason, we are going to make our changes to the abstract tree a, yielding a new
abstract tree a′ of the same form but with modified content.1 For example, let
us change Pat’s phone number, drop Chris, and add a new friend, Jo.

a′ =
{∣∣∣∣Pat �→ 333-4321
Jo �→ 555-6666

∣∣∣∣
}

Lastly, we want to compute a new concrete tree c′ reflecting the new abstract
tree a′. That is, we want the parts of c′ that were kept when calculating a (e.g.,
Pat’s phone number) to be overwritten with the corresponding information from
a′, while the parts of c that were filtered out (e.g., Pat’s URL) have their values
carried over from c.

c′ =

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣∣∣∣∣
Pat �→

{∣∣∣∣Phone �→ 333-4321
URL �→ http://pat.com

∣∣∣∣
}

Jo �→
{∣∣∣∣Phone �→ 555-6666
URL �→ http://google.com

∣∣∣∣
}
∣∣∣∣∣∣∣∣

⎫⎪⎪⎬
⎪⎪⎭

We also need to fill in appropriate values for the parts of c′ (in particular, Jo’s
URL) that were created in a′ and for which c therefore contains no information.
Here, we simply set the URL to a constant default, though in general we might
want to compute it from other information.

Together, the transformations from c to a and from a′ plus c to c′ form a lens.
Our goal is to find a set of combinators that can be assembled to describe a wide
variety of lenses in a concise, natural, and mathematically coherent manner. To

1Note that we are interested here in the final tree a′, not the particular sequence of edit operations
that was used to transform a into a′. This is important in the context of Harmony, which is designed
to support synchronization of off-the-shelf applications, where in general we only have access to
the current states of the replicas rather than a trace of modifications; the trade-offs between state-
based and trace-based synchronizers are discussed in detail elsewhere [Pierce and Vouillon 2004;
Foster et al. 2006].
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whet the reader’s appetite, the lens expression that implements the previous
transformations is map (focus Phone {|URL �→ http://google.com|}).

3. SEMANTIC FOUNDATIONS

Although many of our combinators work on trees, their semantic underpinnings
can be presented in an abstract setting parameterized by the data structures
(which we call views) manipulated by lenses.2 In this section and in Section 4
where we discuss generic combinators, we simply assume some fixed set V of
views; from Section 5 on, we will choose V to be the set of trees.

3.1 Basic Structures

When f is a partial function, we write f (a) ↓ if f is defined on argument a
and f (a) = ⊥ otherwise. We write f (a) � b for f (a) = ⊥ ∨ f (a) = b. We write
dom( f ) for {s | f (s) ↓}, the set of arguments on which f is defined. When S ⊆ V,
we write f (S) for {r | s ∈ S ∧ f (s) ↓ ∧ f (s) = r} and ran( f ) for f (V). We take
function application to be strict: f (g (x)) ↓ implies g (x) ↓.

Definition 3.1 (Lenses). A lens l comprises a partial function l↗ from V to
V, called the get function of l , and a partial function l↘ from V ×V to V, called
the putback function.

The intuition behind the notations l↗ and l↘ is that the get part of a lens lifts
an abstract view out of a concrete one, while the putback part pushes down a
new abstract view into an existing concrete view. We often say “put a into c
(using l )” instead of “apply the putback function (of l ) to (a, c).”

Definition 3.2 (Well-behaved Lenses). Let l be a lens and let C and A be
subsets ofV. We say that l is a well-behaved lens from C to A, written l ∈ C � A,
if it maps arguments in C to results in A and vice versa

l↗(C) ⊆ A (GET)
l↘(A × C) ⊆ C (PUT)

and its get and putback functions obey the following laws:

l ↘ (l↗ c, c) � c for all c ∈ C (GETPUT)
l↗ (l ↘ (a, c)) � a for all (a, c) ∈ A × C (PUTGET)

We call C the source and A the target in C � A. Note that a given l may be a
well-behaved lens from C to A for many different Cs and As. In particular, every
l is trivially a well-behaved lens from ∅ to ∅, while the everywhere-undefined
lens belongs to C � A for every C and A.

2We use the word “view” here in a slightly different sense than some of the database papers that
we cite where a view is a query that maps concrete to abstract states, that is, it is a function that,
for each concrete database state, picks out a view in our sense. Also, note that we use “view” to refer
uniformly to both concrete and abstract structures. When we come to programming with lenses,
the distinction will be merely a matter of perspective anyway since the output of one lens is often
the input to another.
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Intuitively, the GETPUT law states that, if we get some abstract view a from
a concrete view c and immediately putback a (with no modifications) into c, we
must get back exactly c if both operations are defined. PUTGET, on the other
hand, demands that the putback function must capture all of the information
contained in the abstract view: if putting a view a into a concrete view c yields
a view c′, then the abstract view obtained from c′ is exactly a.

An example of a lens satisfying PUTGET but not GETPUT is the following.
Suppose C = string × int and A = string, and define l by:

l↗ (s, n) = s l ↘ (
s′, (s, n)

) = (s′, 0)

Then l ↘(l↗ (s, 1), (s, 1)) = (s, 0) �� (s, 1). Intuitively, the law fails because the
putback function has side effects: it modifies information in the concrete view
that is not reflected in the abstract view.

An example of a lens satisfying GETPUT but not PUTGET is the following. Let
C = string and A = string × int, and define l by :

l↗ s = (s, 0) l ↘((s′, n), s) = s′

PUTGET fails here because some information contained in the abstract view does
not get propagated to the new concrete view. For example, l↗ (l ↘((s′, 1), s)) =
l↗ s′ = (s′, 0) �� (s′, 1).

The GETPUT and PUTGET laws reflect fundamental expectations about the
behavior of lenses; removing either law significantly weakens the semantic
foundation. We may also consider an optional third law, called PUTPUT:

l ↘(a′, l ↘(a, c)) � l ↘(a′, c) for all a, a′ ∈ A and c ∈ C.

This law states that the effect of a sequence of two putbacks is (modulo de-
finedness) just the effect of the second: the first gets completely overwritten.
Alternatively, a series of changes to an abstract view may be applied either
incrementally or all at once, resulting in the same final concrete view. We say
that a well-behaved lens that also satisfies PUTPUT is very well behaved. Both
well-behaved and very well behaved lenses correspond to familiar classes of
“update translators” from the classical database literature (see Section 10).

The foundational development in this section is valid for both well-behaved
and very well behaved lenses. However, when we come to defining our lens
combinators for tree transformations, we will not require PUTPUT because some
of our lens combinators, in particular, map, flatten, merge, and conditionals, fail
to satisfy it for reasons that seem pragmatically unavoidable (see Sections 5.4
and 9.1).

For now, a simple example of a lens that is well behaved but not very well
behaved is as follows. Consider the following lens, where C = string× int and
A = string. The second component of each concrete view intuitively represents
a version number.

l↗ (s, n) = s l ↘(s, (s′, n)) =
{

(s, n) if s = s′

(s, n+1) if s �= s′

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 17, Publication date: May 2007.



8 • J. N. Foster et al.

The get function of l projects away the version number and yields just the
data part. The putback function overwrites the data part, checks whether the
new “data part” is the same as the old one, and, if not, increments the version
number. This lens satisfies both GETPUT and PUTGET but not PUTPUT as we have
l ↘(s, l ↘(s′, (c, n))) = (s, n + 2) �� (s, n + 1) = l ↘(s, (c, n)).

Another critical property of lenses is totality with respect to a given source
and target.

Definition 3.3 (Totality). A lens l ∈ C � A is said to be total, written l ∈
C ⇐⇒ A, if C ⊆ dom(l↗) and A × C ⊆ dom(l↘).

The reasons for considering both partial and total lenses instead of building
totality into the definition of well-behavedness are much the same as the rea-
sons for considering partial functions in conventional functional languages. In
practice, we want lenses to be total.3 To guarantee that Harmony synchroniz-
ers will work predictably, lenses must be defined on the whole of the domains
where they are used; the get direction should be defined for any structure in the
concrete set, and the putback direction should be capable of putting back any
possible updated version from the abstract set.4 All of our primitive lenses are
designed to be total, and all of our lens combinators map total lenses to total
lenses with the sole but important exception of lenses defined by recursion; as
usual, recursive lenses must be constructed in the semantics as limits of chains
of increasingly defined partial lenses. The soundness of the type annotations we
give for our syntactic lens combinators guarantees that every well-typed lens
expression is well-behaved, but only recursion-free expressions can be shown
total by completely compositional reasoning with types; for recursive lenses,
more global arguments are required as we shall see.

3.2 Basic Properties

We now explore some simple but useful consequences of the lens laws. All the
proofs can be found in the electronic appendix.

Definition 3.4. Let f be a partial function from A× C to C and P ⊆ A× C.
We say that f is semi-injective on P if it is injective (in the standard sense) in
the first component of arguments drawn from P, that is, if, for all views a, a′,
c, and c′ with (a, c) ∈ P and (a′, c′) ∈ P , if f (a, c) ↓ and f (a′, c′) ↓, then a �= a′

implies f (a, c) �= f (a′, c′).

3Indeed, well-behavedness is rather trivial in the absence of totality: for any function l↗ from C
to A, we can obtain a well-behaved lens by taking l↘ to be undefined on all inputs or, slightly less
trivially, to be defined only on inputs of the form (l↗ c, c).
4Since we intend to use lenses to build synchronizers, the updated structures here will be results
of synchronization. A fundamental property of the core synchronization algorithm in Harmony is
that, if all of the updates between synchronizations occur in just one of the replicas, then the effect
of synchronization will be to propagate all these changes to the other replica. This implies that
the putback function in the lens associated with the other replica must be prepared to accept any
value from the abstract domain. In other settings, different notions of totality may be appropriate.
For example, Hu et al. [2004] have argued that, in the context of interactive editors, a reasonable
definition of totality is that l ↘ (a, c) should be defined whenever a differs by at most one edit
operation from l↗c.
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LEMMA 3.5. If l ∈ C � A, then l↘ is semi-injective on {(a, c) | (a, c) ∈
A × C ∧ l↗ (l ↘ (a, c)) ↓}.

The main application of this lemma is the following corollary, which provides
an easy way to show that a lens is not well behaved. We used it many times
while designing our combinators, to quickly generate and test candidates.

COROLLARY 3.6. If l ∈ C ⇐⇒ A, then l↘ is semi-injective on A × C.

An important special case arises when the putback function of a lens is com-
pletely insensitive to its concrete argument.

Definition 3.7. A lens l is said to be oblivious if l ↘ (a, c) = l ↘ (
a, c′) for

all a, c, c′ ∈ V.

Oblivious lenses have some special properties that make them simpler to
reason about than lenses in general.

LEMMA 3.8. If l is oblivious and l ∈ C1 � A1 and l ∈ C2 � A2, then
l ∈ (C1 ∪ C2) � (A1 ∪ A2).

LEMMA 3.9. If l ∈ C ⇐⇒ A is oblivious, then l↗ is a bijection from C to A.

Conversely, every bijection between C and A induces a total oblivious lens
from C to A, that is, the set of bijections between subsets of V forms a subcat-
egory of the category of total lenses. Many of the combinators defined in the
following actually live in this simpler subcategory as does much of the related
work surveyed in Section 10.

3.3 Recursion

Since we will be interested in lenses over trees, and since trees in many applica-
tion domains may have unbounded depth (e.g., a bookmark can be either a link
or a folder containing a list of bookmarks), we will often want to define lenses
by recursion. Our next task is to set up the necessary structure for interpreting
such definitions.

The development follows familiar lines. We introduce an information order-
ing on lenses and show that the set of lenses equipped with this ordering is a
complete partial order (CPO). We then apply standard tools from domain theory
to interpret a variety of common syntactic forms from programming languages,
in particular, functional abstraction and application (higher-order lenses) and
lenses defined by single or mutual recursion.

We say that a lens l ′ is more informative than a lens l , written l ≺ l ′, if both
the get and putback functions of l ′ have domains that are at least as large as
those of l and their results agree on their common domains.

Definition 3.10. l ≺ l ′ if and only if dom(l↗) ⊆ dom(l ′↗), dom(l↘) ⊆
dom(l ′↘), l↗ c = l ′↗ c for all c ∈ dom(l↗), and l ↘ (a, c) = l ′ ↘ (a, c) for
all (a, c) ∈ dom(l↘).

LEMMA 3.11. ≺ is a partial order on lenses.
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A cpo is a partially ordered set in which every increasing chain of elements
has a least upper bound in the set. If l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . is an increasing
chain, we write

⊔
n∈ω ln (often shortened to

⊔
n ln) for its least upper bound. A

cpo with bottom is a cpo with an element ⊥ that is smaller than every other
element. In our setting, the bottom element ⊥l is the lens whose get and putback
functions are everywhere undefined. It is obviously the smallest lens according
to ≺ and is well-behaved at any lens type (it trivially satisfies all equations).

LEMMA 3.12. Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses.
The lens l defined by

l ↘ (a, c) = li ↘ (a, c) if li ↘ (a, c) ↓ for some i

l↗ c = li↗ c if li↗ c ↓ for some i

and undefined elsewhere is a least upper bound for the chain.

COROLLARY 3.13. Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of
lenses. For every a, c ∈ V, we have:

(1) (
⊔

n ln)↗ c = v if and only if ∃i. li↗ c = v.
(2) (

⊔
n ln) ↘ (a, c) = v if and only if ∃i. li ↘ (a, c) = v.

LEMMA 3.14. Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses,
and let C0 ⊆ C1 ⊆ . . . and A0 ⊆ A1 ⊆ . . . be increasing chains of subsets of V.
Then:

(1) well-behavedness commutes with limits:
(∀i ∈ ω. li ∈ Ci � Ai) implies

⊔
n ln ∈ (

⋃
i Ci) � (

⋃
i Ai).

(2) totality commutes with limits:
(∀i ∈ ω. li ∈ Ci ⇐⇒ Ai) implies

⊔
n ln ∈ (

⋃
i Ci) ⇐⇒ (

⋃
i Ai).

THEOREM 3.15. Let L be the set of well-behaved lenses from C to A. Then
(L, ≺) is a cpo with bottom.

When defining lenses, we will make heavy use of the following standard
theorem from domain theory (e.g., Winskel [1993]). Recall that a function f
between two cpos is continuous if it is monotonic and if, for all increasing chains
l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . , we have f (

⊔
n ln) = ⊔

n f (ln). A fixed point of f is a
function fix( f ) satisfying fix( f ) = f (fix( f )).

THEOREM 3.16 (FIXED-POINT THEOREM). Let f be a continuous function from
D to D, where D is a cpo with bottom. Define

fix( f ) =
⊔

n

f n(⊥)

Then fix( f ) is a fixed point, in fact the least fixed point, of f .

Theorem 3.15 tells us that we can apply Theorem 3.16 to continuous func-
tions from lenses to lenses, that is, it justifies defining lenses by recursion. The
following corollary packages this argument in a convenient form; we will appeal
to it many times in later sections to show that recursive derived forms are well
behaved and total.
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COROLLARY 3.17. Suppose f is a continuous function from lenses to lenses.

(1) If l ∈ C � A implies f (l ) ∈ C � A for all l , then fix( f ) ∈ C � A.
(2) Suppose ∅ = C0 ⊆ C1 ⊆ . . . and ∅ = A0 ⊆ A1 ⊆ . . . are increasing chains of

subsets of V. If l ∈ Ci ⇐⇒ Ai implies f (l ) ∈ Ci+1 ⇐⇒ Ai+1 for all i and l ,
then fix( f ) ∈ (

⋃
i Ci) ⇐⇒ (

⋃
i Ai).

We can now apply standard domain theory to interpret a variety of con-
structs for defining continuous lens combinators. We say that an expression e
is continuous in the variable x if the function λx.e is continuous. An expres-
sion is said to be continuous in its variables, or simply continuous, if it is
continuous in every variable separately. Examples of continuous expressions
are variables, constants, tuples (of continuous expressions), projections (from
continuous expressions), applications of continuous functions to continuous ar-
guments, lambda abstractions (whose bodies are continuous), let bindings (of
continuous expressions in continuous bodies), case constructions (of continuous
expressions), and the fixed point operator itself. Tupling and projection let us
define mutually recursive functions: if we want to define f as F ( f , g ) and g
as G( f , g ), where both F and G are continuous, we define ( f , g ) = fix(λ(x, y).
(F (x, y), G(x, y))).

When proving the totality of recursive lenses, we sometimes need to use a
more powerful induction scheme in which a lens is proved simultaneously to be
total on a whole collection of different types (any of which can be used in the
induction step). This is supported by a generalization of the proof technique in
Corollary 3.17(2).

We specify a total type by a pair (C, A) of subsets of V and say that a lens l
has this type, written l ∈ (C, A) iff l ∈ C ⇐⇒ A. We use the variable τ to range
over total types and T for sets of total types. We write (C, A) ⊆ (C′, A′) iff C ⊆ C′

and A ⊆ A′ and write (C, A) ∪ (C′, A′) for (C ∪ C′, A ∪ A′).

Definition 3.18. The increasing chain τ0 ⊆ τ1 ⊆ . . . is an increasing instance
of the sequence T0, T1, . . . iff τi ∈ Ti for all i.

Note that T0, T1, . . . is an arbitrary sequence of sets of total types—the se-
quence need not be increasing. This is the trick that makes this proof technique
work: we start with a sequence of sets of total types T0, T1, . . . that, a priori,
have nothing to do with each other; we then show that some continuous func-
tion f on lenses gets us from each Ti to Ti+1, in the sense that f takes any lens
l that belongs to all of the total types in Ti to a lens f (l ) that belongs to all
of the total types in Ti+1. Finally, we identify an increasing chain of particular
total types τ0 ⊆ τ1 ⊆ . . . whose limit is the total type that we desire to show for
the fixed point of f and such that each τi belongs to Ti, and hence is a type for
f i(⊥l ).

Here is the generalization of Corollary 3.17(2) to increasing instances of
sequences of sets of total types. It will be used in Section 7.

LEMMA 3.19. Suppose f is a continuous function from lenses to lenses and
T0, T1, . . . is a sequence of sets of total types with T0 = {(∅, ∅)}. If for all l and i

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 17, Publication date: May 2007.



12 • J. N. Foster et al.

we have (∀τ ∈ Ti. l ∈ τ ) implies (∀τ ∈ Ti+1. f (l ) ∈ τ ), then for every increasing
instance τ0 ⊆ τ1 ⊆ . . . of T0, T1, . . . we have fix( f ) ∈ ⋃

i τi .

3.4 Dealing with Creation

In practice, there will be cases where we need to apply a putback function but
where no old concrete view is available as we saw with Jo’s URL in Section 2.
We deal with these cases by enriching the universe V of views with a special
placeholder �, pronounced missing, which we assume is not already inV. (There
are other, formally equivalent, ways of handling missing concrete views. The
advantages of this one are discussed in Section 5.4.) When S ⊆ V, we write S�

for S ∪ {�}.
Intuitively, l ↘ (a, �) means “create a new concrete view from the informa-

tion in the abstract view a.” By convention, � is only used in an interesting
way when it is the second argument to the putback function: in all of the lenses
defined in the following, we maintain the invariants that (1) l↗ � = �, (2)
l ↘ (�, c) = � for any c, (3) l↗ c �= � for any c �= �, and (4) l ↘ (a, c) �= � for
any a �= � and any c (including �). We write C �� A for the set of well-behaved
lenses from C� to A� obeying these conventions and C ⇐⇒� A for the set of total
lenses obeying these conventions. For brevity in the lens definitions that follow,
we always assume that c �= � when defining l↗ c and that a �= � when defin-
ing l ↘ (a, c) since the results in these cases are uniquely determined by these
conventions. A useful consequence of these conventions is that a lens l ∈ C �� A
also has type C � A.

LEMMA 3.20. For any lens l and sets of views C and A: l ∈ C �� A implies
l ∈ C � A and (2) l ∈ C ⇐⇒� A implies l ∈ C ⇐⇒ A.

4. GENERIC LENSES

With these semantic foundations in hand, we are ready to move on to syntax.
We begin in this section with several generic lens combinators (we will usu-
ally say just “lenses” from now on) whose definitions are independent of the
particular choice of universe V. Each definition is accompanied by a type dec-
laration asserting its well-behavedness under certain conditions, for instance,
“the identity lens belongs to C �� C for any C”.

Many of the lens definitions are parameterized on one or more arguments.
These may be of various types: views (e.g., const), other lenses (e.g., composi-
tion), predicates on views (e.g., the conditional lenses in Section 6), or in some
of the lenses for trees in Section 5, edge labels, predicates on labels, etc.

Electronic Appendix A contains representative proofs that the lenses we de-
fine are well-behaved (i.e., that the type declaration accompanying its definition
is a theorem) and total and that lenses that take other lenses as parameters are
continuous in these parameters and map total lenses to total lenses. Indeed,
nearly all of the lenses we define are very well-behaved (if their lens arguments
are), the only exceptions are map, flatten, merge, and conditionals; we do not
prove very well-behavedness, however, since we are mainly interested just in
the well-behaved case.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 17, Publication date: May 2007.



Combinators for Bidirectional Tree Transformations • 13

4.1 Identity

The simplest lens is the identity. It copies the concrete view in the get direction
and the abstract view in the putback direction.

id↗ c = c
id↘ (a, c) = a

∀C⊆V. id ∈ C ⇐⇒� C

Having defined id, we must prove that it is well-behaved and total, that is, that
its type declaration is a theorem. We state the properties explicitly as lemmas
and give proofs (in electronic Appendix A) for id and a few representative lenses.
For the rest, we elide both the statements of the properties, which can be read
off from each lens’s definition, and the proofs, which are largely calculational.

LEMMA 4.1 (WELL-BEHAVEDNESS). ∀C⊆V. id ∈ C �� C

LEMMA 4.2 (TOTALITY). ∀C⊆V. id ∈ C ⇐⇒� C

For each lens definition, the statements of the well-behavedness and totality
lemmas are almost identical, just replacing �� by ⇐⇒� . In the case of id, we
could just as well combine the two into a single lemma because every lens with
a total type is also well-behaved at that type. However, for lens definitions that
are parameterized on other lenses (like composition, which follows), the totality
of the compound lens depends on the totality (not just well-behavedness) of its
argument lenses, while we can establish the well-behavedness of the composite
even if the arguments are only well-behaved and not necessarily total. Since
we expect this situation will be common in practice—because programmers will
always want to check that their lenses are well-behaved, since the reasoning
involved is simple and local, but they may not want to go to the trouble of setting
up the more intricate global reasoning needed to prove that their recursive lens
definitions are total—we state the two lemmas (i.e., typings) separately.

4.2 Composition

The lens composition combinator l ; k places l and k in sequence.

(l ; k)↗ c = k↗ (l↗ c)
(l ; k) ↘ (a, c) = l ↘ (k ↘ (a, l↗ c), c)

∀A, B, C⊆V. ∀l ∈ C �� B. ∀k ∈ B �� A. l ; k ∈ C �� A

∀A, B, C⊆V. ∀l ∈ C ⇐⇒� B. ∀k ∈ B ⇐⇒� A. l ; k ∈ C ⇐⇒� A

The get direction applies the get function of l to yield a first abstract view on
which the get function of k is applied. In the other direction, the two putback
functions are applied in turn. First, the putback function of k is used to put a
into the concrete view that the get of k was applied to, that is, l↗ c; the result is
then put into c using the putback function of l . (If the concrete view c is �, then,
l↗ c will also be � by our conventions on the treatment of � so the effect of
(l ; k) ↘ (a, �) is to use k to put a into � and then l to put the result into �.) We
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record two different type declarations for composition, one for the case where
the parameter lenses l and k are only known to be well-behaved, and another
for the case where they are also known to be total.

Once again, proofs that the composition operator has these types are given
in electronic Appendix A.

LEMMA 4.3 (WELL-BEHAVEDNESS).
∀A, B, C⊆V. ∀l ∈ C �� B. ∀k ∈ B �� A. l ; k ∈ C �� A

LEMMA 4.4 (TOTALITY).
∀A, B, C⊆V. ∀l ∈ C ⇐⇒� B. ∀k ∈ B ⇐⇒� A. l ; k ∈ C ⇐⇒� A

Besides well-behavedness and totality, we must also show that lens com-
position is continuous in its arguments. This will justify using composition in
recursive lens definitions. In order for a recursive lens defined as fix(λl . l1; l2)
(where l1 and l2 may both mention l ) to be well formed, we need to apply Theo-
rem 3.16, which requires that λl . l1; l2 be continuous in l . The following lemma
shows that this will be the case whenever l1 and l2 are continuous in l .

LEMMA 4.5 (CONTINUITY). Let F and G be continuous functions from lenses
to lenses. Then the function λl . (F (l ); G(l )) is continuous.

We have proved an analogous lemma for each of our lens combinators that
takes other lenses as parameters so that the continuity of every lens expression
will follow from the continuity of its immediate constituents, but we will not
bother to state these continuity lemmas explicitly in what follows.

4.3 Constant

Another simple combinator is const v d , which transforms any view into the
constant view v in the get direction. In the putback direction, const simply
restores the old concrete view if one is available; if the concrete view is �, it
returns a default view d .

(const v d )↗ c = v
(const v d ) ↘ (a, c) = c if c �= �

d if c = �

∀C⊆V. ∀v∈V. ∀d∈C. const v d ∈ C ⇐⇒� {v}

Note that the type declaration demands that the putback direction only be
applied to the abstract argument v.

We will define a few more generic lenses in Section 6; for now though, let us
turn to some lens combinators that work on tree-structured data so that we can
ground our definitions in specific examples.

5. LENSES FOR TREES

To keep the definitions of our lens primitives as straightforward as possible,
we work with an extremely simple form of trees: unordered, edge-labeled trees
with no repeated labels among the children of a given node. This model is a
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natural fit for applications where the data is unordered such as the keyed-
address books described in Section 2. Unfortunately, unordered trees do not
have all the structure we need for other applications; in particular, we will need
to deal with ordered data such as lists and XML documents via an encoding
(shown in Section 8). A more direct treatment of ordered trees is a worthwhile
topic for future work, but, in the context of the Harmony system where we
are interested in both ordered and unordered data, the choice of a simpler
foundation seems to have been a good one: the increase in complexity of lens
programs that must manipulate ordered data in encoded form is more than
made up by the reduction in the complexity of the definitions of lens primitives
due to the simpler data model.

5.1 Notation

From this point on, we choose the universe V to be the set T of finite, unordered,
edge-labeled trees with labels drawn from some infinite set N of names, for
example, character strings, and with the children of a given node all labeled
with distinct names. Trees of this form (often extended with labels on internal
nodes as well as on children) are sometimes called deterministic trees or feature
trees (e.g., Niehren and Podelski [1993]). The variables a, c, d , and t range over
T ; by convention, we use a for trees that are thought of as abstract and c or d
for concrete trees.

A tree is essentially a finite partial function from names to other trees. It
will be more convenient though to adopt a slightly different perspective: we will
consider a tree t ∈ T to be a total function from N to T� that yields � on all
but a finite number of names. We write dom(t) for the domain of t, that is, the
set of the names for which it returns something other than �, and t(n) for the
subtree associated to name n in t, or � if n �∈ dom(t).

Tree values are written using hollow curly braces. The empty tree is written
{||}. (Note that {||}, a node with no children, is different from �.) We often describe
trees by comprehension, writing {|n �→ F (n) | n ∈ N |}, where F is some function
from N to T� and N ⊆ N is some set of names. When t and t ′ have disjoint
domains, we write t · t ′ or {|t t ′|} (the latter especially in multiline displays) for
the tree mapping n to t(n) for n ∈ dom(t), to t ′(n) for n ∈ dom(t ′), and to �

otherwise.
When p ⊆ N is a set of names, we write p for N \p, the complement of p.

We write t|p for the restriction of t to children with names from p, that is, the
tree {|n �→ t(n) | n ∈ p ∩ dom(t)|}, and t\p for {|n �→ t(n) | n ∈ dom(t)\p|}. When p
is just a singleton set {n}, we drop the set braces and write just t|n and t\n

instead of t|{n} and t\{n}. To shorten some of the lens definitions, we adopt the
conventions that dom(�) = ∅ and that �|p = �\p = � for any p.

For writing down types,5 we extend these tree notations to sets of trees. If
T ⊆ T and n ∈ N , then {|n �→ T |} denotes the set of singleton trees {{|n �→ t|} | t ∈

5Note that, although we are defining a syntax for lens expressions, the types used to classify these
expressions are semantic; they are just sets of lenses or views. We are not (yet, see Section 11)
proposing an algebra of types or an algorithm for mechanically checking membership of lens ex-
pressions in type expressions.
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T }. If T ⊆ T and N ⊆ N , then {|N �→ T |} denotes the set of trees {t | dom(t) =
N and ∀n ∈ N . t(n) ∈ T } and {|N ?�→ T |} denotes the set of trees {t | dom(t) ⊆
N and ∀n ∈ N . t(n) ∈ T�}. We write T1 · T2 for {t1 · t2 | t1 ∈ T1, t2 ∈ T2} and
T (n) for {t(n) | t ∈ T } \ {�}. If T ⊆ T , then doms(T ) = {dom(t) | t ∈ T }. Note
that doms(T ) is a set of sets of names, while dom(t) is a set of names.

A value is a tree of the special form {|k �→ {||}|}, often written just k. For in-
stance, the phone number {|333-4444 �→ {||}|} in the example of Section 2 is a
value. We write Val for the type whose denotation is the set of all values.

5.2 Hoisting and Plunging

Let’s warm up with some combinators that perform simple structural transfor-
mations on trees. The lens hoist n is used to shorten a tree by removing an
edge at the top. In the get direction, it expects a tree that has exactly one child,
named n. It returns this child, removing the edge n. In the putback direction,
the value of the old concrete tree is ignored and a new one is created with a
single edge n pointing to the given abstract tree. (Later we will meet a derived
form, hoist nonunique, that works on bushier trees.)

(hoist n)↗ c = c(n)
(hoist n) ↘ (a, c) = {|n �→ a|}
∀C⊆T . ∀n∈N . hoist n ∈ {|n �→ C|} ⇐⇒� C

Conversely, the plunge lens is used to deepen a tree by adding an edge at the
top. In the get direction, a new tree is created with a single edge n pointing to
the given concrete tree. In the putback direction, the value of the old concrete
tree is ignored and the abstract tree is required to have exactly one subtree,
labeled n, which becomes the result of the plunge.

(plunge n)↗ c = {|n �→ c|}
(plunge n) ↘ (a, c) = a(n)

∀C⊆T . ∀n∈N . plunge n ∈ C ⇐⇒� {|n �→ C|}

5.3 Forking

The lens combinator xfork applies different lenses to different parts of a tree.
More precisely, it splits the tree into two parts according to the names of its im-
mediate children, applies a different lens to each, and concatenates the results.
Formally, xfork takes as arguments two sets of names and two lenses. The get
direction of xfork pc pa l1 l2 can be visualized as in Figure 1 (the concrete tree
is at the bottom). The triangles labeled pc denote trees whose immediate chil-
dren have labels in pc; dotted arrows represent splitting or concatenating trees.
The result of applying l1↗ to c|pc (the tree formed by dropping the immediate
children of c whose names are not in pc) must be a tree whose top-level labels
are in the set pa; similarly, the result of applying l2↗ to c\pc must be in pa.
That is, the lens l1 may change the names of immediate children of the tree it is
given, but it must map the part of the tree with immediate children belonging
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Fig. 1. The get direction of xfork.

to pc to a tree with children belonging to pa. Likewise, l2 must map the part of
the tree with immediate children belonging to pc to a tree with children in pa.
Conversely, in the putback direction, l1 must map from pa to pc and l2 from pa
to pc. Here is the full definition.

(xfork pc pa l1 l2)↗ c = (l1↗ c|pc) · (l2↗ c\pc)
(xfork pc pa l1 l2) ↘ (a, c) = (l1 ↘(a|pa, c|pc)) · (l2 ↘(a\pa, c\pc))

∀pc, pa⊆N . ∀C1⊆T |pc. ∀A1⊆T |pa. ∀C2⊆T \pc. ∀A2⊆T \pa.

∀l1 ∈ C1 �� A1. ∀l2 ∈ C2 �� A2.

xfork pc pa l1 l2 ∈ (C1 · C2) �� (A1 · A2)

∀pc, pa⊆N . ∀C1⊆T |pc. ∀A1⊆T |pa. ∀C2⊆T \pc. ∀A2⊆T \pa.

∀l1 ∈ C1 ⇐⇒� A1. ∀l2 ∈ C2 ⇐⇒� A2.

xfork pc pa l1 l2 ∈ (C1 · C2) ⇐⇒� (A1 · A2)

We rely on our convention that �|p = �\p = � to avoid explicitly splitting out
the � case in the putback direction.

We have now defined enough basic lenses to implement several useful derived
forms for manipulating trees.

In many uses of xfork, the sets of names specifying where to split the concrete
tree and where to split the abstract tree are identical. We can define a simpler
fork as follows:

fork p l1 l2 = xfork p p l1 l2

∀p⊆N . ∀C1, A1⊆T |p. ∀C2, A2⊆T \p. ∀l1 ∈ C1 �� A1. ∀l2 ∈ C2 �� A2.

fork p l1 l2 ∈ (C1 · C2) �� (A1 · A2)

∀p⊆N . ∀C1, A1⊆T |p. ∀C2, A2⊆T \p. ∀l1 ∈ C1 ⇐⇒� A1. ∀l2 ∈ C2 ⇐⇒� A2.

fork p l1 l2 ∈ (C1 · C2) ⇐⇒� (A1 · A2)

We can use fork to define a lens that discards all of the children of a tree whose
names do not belong to some set p.
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filter p d = fork p id (const {||} d )

∀C⊆T . ∀p⊆N . ∀d ∈ C\p.

filter p d ∈ (C|p · C\p) ⇐⇒� C|p

In the get direction, this lens takes a concrete tree, keeps the children with
names in p (using id), and throws away the rest (using const {||} d ). The tree
d is used when putting an abstract tree back into a missing concrete tree,
providing a default for information that does not appear in the abstract tree
but is required in the concrete tree. The type of filter follows directly from
the types of the three primitive lenses used to define it: const {||} d with type
C\p ⇐⇒� {{||}}, the lens id with type C|p ⇐⇒� C|p, and fork (with the observation
that C|p = C|p · {||}).

Let us see how filter behaves in an example. Let the concrete tree c =
{|name �→ Pat, phone �→ 333-4444|}, and lens l = filter {name} {||}. We calculate
l↗ c, underlining the next term to be simplifed at each step.

l↗ c = (fork {name} id (const{||} d ))↗ {|name �→ Pat, phone �→ 333-444|}
by the definition of l

= id↗ {|name �→ Pat|} · (const {||} d )↗ {|phone �→ 333-4444|}
by the definition of fork and splitting c using {name}

= {|name �→ Pat|} · {||} = {|name �→ Pat|} = a
by the definitions of id and const

Now suppose that we update this tree, a, to {|name �→ Patty|}. Let us calculate
the result of putting back a into c. To save space, we write k for (const {||} {||}).

l ↘ (a, c)
= (fork {name} id k) ↘({|name �→ Pat|}, {|name �→ Pat, phone �→ 333-4444|})

by the definition of l
= id↘({|name �→ Patty|}, {|name �→ Pat|}) · k ↘({||}, {|phone �→ 333-4444|})

by the definition of fork and splitting a and c using {name}
= {|name �→ Patty, phone �→ 333-4444|}

by the definition of id and const

Note that the putback function restores the filtered part of the concrete tree
and propagates the change made to the abstract tree. In the case of creation,
that is, if we put back an abstract tree using �, then the default argument to
const is concatenated to the abstract tree to form the result since there is no
filtered part of the concrete tree to restore.

Another way to thin a tree is to explicitly specify a child that should be
removed if it exists.

prune n d = fork {n} (const {||} {|n �→ d |}) id
∀C⊆T . ∀n∈N . ∀d∈C(n).

prune n d ∈ (C|n · C\n) ⇐⇒� C\n

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 17, Publication date: May 2007.



Combinators for Bidirectional Tree Transformations • 19

This lens is similar to filter except that (1) the name given is the child to be
removed rather than a set of children to keep, and (2) the default tree is the
one to go under n if the concrete tree is �.

Conversely, we can grow a tree in the get direction by explicitly adding a
child. The type annotation disallows changes in the newly-added tree so it can
be dropped in the putback.

add n t = xfork {} {n} (const t {||}; plunge n) id

∀n∈N . ∀C⊆T \n. ∀t ∈ T .

add n t ∈ C ⇐⇒� {|n �→ {t}|} · C

Let us explore the behavior of add through an example. Let c = {|a �→ {||}|} and l =
add b {|x �→ {||}|}. To save space, write k for const {|x �→ {||}|} {||} and p for plunge b.
We calculate l↗ c directly, underlining the term to be simplifed at each step.

l↗ c = (xfork {} {b} (k; p) id)↗ c
by the definition of l

= (k; p)↗ {||} · id↗ {∣∣a �→ {||}∣∣}
by the definition of xfork and splitting c using {}

= p↗ (k↗ {||}) · {∣∣a �→ {||}∣∣}
by the definitions of the composition and id

=
(

p↗ {∣∣x �→ {||}∣∣}) · {∣∣a �→ {||}∣∣}
by the definition of k

=
{∣∣∣a �→ {||}, b �→ {∣∣x �→ {||}∣∣}∣∣∣}

by the definition of p

Now suppose we modify this tree by renaming the child a to c, obtaining
a = {|c �→ {||}, b �→ {|x �→ {||}|}|}. The result of the putback function, l ↘ (a, c), is
calculated as follows.

l ↘ (a, c) = (xfork {} {b} (k; p) id) ↘ (a, c)
by the definition of l

=
(
(k; p) ↘

({∣∣∣b �→ {∣∣x �→ {||}∣∣}∣∣∣} , {||}
))

·
(
id↘ ({∣∣c �→ {||}∣∣} ,

{∣∣a �→ {||}∣∣}))
by the definition of xfork, splitting a using {b} and c using {}

=
(

(k; p) ↘
({∣∣∣b �→ {∣∣x �→ {||}∣∣}∣∣∣} , {||}

))
· {∣∣c �→ {||}∣∣}

by the definition of id

=
(

k ↘
(

p ↘
({∣∣∣b �→ {∣∣x �→ {||}∣∣}∣∣∣} , k↗ {||}

)
, {||}

))
· {∣∣c �→ {||}∣∣}

by the definition of composition

=
(
k ↘ ({∣∣x �→ {||}∣∣} , {||})) · {∣∣c �→ {||}∣∣}
by the definition of p

= {||} · {∣∣c �→ {||}∣∣} = {∣∣c �→ {||}∣∣}
by the definition of k
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Another derived lens focuses attention on a single child n.

focus n d = (filter {n} d ); (hoist n)

∀n∈N . ∀C⊆T \n.∀d∈C. ∀D⊆T .

focus n d ∈ (C · {|n �→ D|}) ⇐⇒� D

In the get direction, focus filters away all other children, then removes the
edge n and yields n’s subtree. As usual, the default tree is only used in the
case of creation where it is the default for children that have been filtered
away. The type of focus follows from the types of the lenses from which it is
defined, observing that filter {n} d ∈ (C · {|n �→ D|}) ⇐⇒� {|n �→ D|} and that
hoist n ∈ {|n �→ D|} ⇐⇒� D.

The hoist primitive defined earlier requires that the name that is hoisted is
the unique child of the concrete tree. It is often useful to relax this requirement,
hoisting one child out of many. This generalized version of hoist is annotated
with the set p of possible names of the grandchildren that will become children
after the hoist, which must be disjoint from the names of the existing children.

hoist nonunique n p = xfork {n} p (hoist n) id

∀n∈N . ∀p⊆N . ∀D⊆T \{n}∪p. ∀C⊆T |p.

hoist nonunique n p ∈ ({|n �→ C|} · D) ⇐⇒� (C · D)

A last derived lens renames a single child.

rename m n = xfork {m} {n} (hoist m; plunge n) id

∀m, n∈N . ∀C⊆T . ∀D⊆T \{m,n}.
rename m n ∈ ({|m �→ C|} · D) ⇐⇒� ({|n �→ C|} · D)

In the get direction, rename splits the concrete tree in two. The first tree has
a single child m (which is guaranteed to exist by the type annotation) and is
hoisted up, removing the edge named m, and then plunged under n. The rest of
the original tree is passed through the id lens. Similarly, the putback direction
splits the abstract view into a tree with a single child n and the rest of the tree.
The tree under n is put back using the lens (hoist m; plunge n), which first
removes the edge named n, and then plunges the resulting tree under m. Note
that the type annotation on rename demands that the concrete view have a
child named m and that the abstract view have a child named n. In Section 6,
we will see how to wrap this lens in a conditional to obtain a lens with a more
flexible type.

5.4 Mapping

So far, all of our lens combinators do things near the root of the trees they are
given. Of course, we also want to be able to perform transformations in the
interior of trees. The map combinator is our fundamental means of doing this.
When combined with recursion, it also allows us to iterate over structures of
arbitrary depth.
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The map combinator is parameterized on a single lens l . In the get direction,
map applies l↗ to each subtree of the root and combines the results together
into a new tree. (Later in this section, we will define a more general combinator,
called wmap, that can apply a different lens to each subtree. Defining map first
lightens the notational burden in the explanations of several fine points about
the behavior and typing of both combinators.) For example, the lens map l has
the following behavior in the get direction when applied to a tree with three
children. ⎧⎨

⎩
∣∣∣∣∣∣
n1 �→ t1
n2 �→ t2
n3 �→ t3

∣∣∣∣∣∣
⎫⎬
⎭ becomes

⎧⎨
⎩
∣∣∣∣∣∣
n1 �→ l↗ t1
n2 �→ l↗ t2
n3 �→ l↗ t3

∣∣∣∣∣∣
⎫⎬
⎭

The putback direction of map is more interesting. In the simple case where a
and c have equal domains, its behavior is straightforward: it uses l↘ to combine
concrete and abstract subtrees with identical names and assembles the results
into a new concrete tree, c′.

(map l ) ↘
⎛
⎝
⎧⎨
⎩
∣∣∣∣∣∣
n1 �→ t1
n2 �→ t2
n3 �→ t3

∣∣∣∣∣∣
⎫⎬
⎭,

⎧⎨
⎩
∣∣∣∣∣∣
n1 �→ t ′

1
n2 �→ t ′

2
n3 �→ t ′

3

∣∣∣∣∣∣
⎫⎬
⎭
⎞
⎠ =

⎧⎨
⎩
∣∣∣∣∣∣
n1 �→ l ↘ (

t1, t ′
1

)
n2 �→ l ↘ (

t2, t ′
2

)
n3 �→ l ↘ (

t3, t ′
3

)
∣∣∣∣∣∣
⎫⎬
⎭

In general, however, the abstract tree a in the putback direction need not
have the same domain as c (i.e., the edits that produced the new abstract
view may have involved adding and deleting children); the behavior of map
in this case is a little more involved. Observe first that the domain of c′ is de-
termined by the domain of the abstract argument to putback. Since we aim
at building total lenses, we may suppose that (map l )↗ ((map l ) ↘ (a, c)) is de-
fined, in which case dom((map l )↗ ((map l ) ↘ (a, c))) = dom(a) by rule PUTGET,
and dom((map l ) ↘ (a, c)) = dom(a) as (map l )↗ does not change the domain of
the tree. This means we can simply drop children that occur in dom(c) but not
in dom(a). Children bearing names that occur both in dom(a) and dom(c) are
dealt with as described previously. This leaves the children that only appear in
dom(a) that need to be passed through l so that they can be included in c′. To do
this, we need some concrete argument to pass to l↘. There is no corresponding
child in c, so instead these abstract trees are put into the missing tree �. In-
deed, this case is precisely why we introduced �. Formally, the behavior of map
is defined as follows. (It relies on the convention that c(n) = � if n �∈ dom(c);
the type declaration also involves some new notation, explained later.)

(map l )↗ c = {|n �→ l↗ c(n) | n ∈ dom(c)|}
(map l ) ↘ (a, c) = {|n �→ l ↘ (

a(n), c(n)
) | n ∈ dom(a)|}

∀C, A⊆T with C = C�, A = A�, doms(C) = doms(A).
∀l ∈ (

⋂
n∈N . C(n) �� A(n)).

map l ∈ C �� A

∀C, A⊆T with C = C�, A = A�, doms(C) = doms(A).
∀l ∈ (

⋂
n∈N . C(n) ⇐⇒� A(n)).

map l ∈ C ⇐⇒� A
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Because of the way that it takes the tree apart, transforms the pieces, and
reassembles them, the typing of map is a little subtle. For example, in the get
direction, map does not modify the names of the immediate children of the con-
crete tree, and in the putback direction, the names of the abstract tree are
left unchanged; we might therefore expect a simple typing rule stating that
if l ∈ (

⋂
n∈N C(n) �� A(n)), that is, if l is a well-behaved lens from the con-

crete subtree type C(n) to the abstract subtree type A(n) for each child n, then
map l ∈ C �� A. Unfortunately, for arbitrary C and A, the map lens is not guaran-
teed to be well-behaved at this type. In particular, if doms(C), the set of domains
of trees in C, is not equal to doms(A), then the putback function can produce a
tree that is not in C, as the following example shows. Consider the sets of trees

C = {{∣∣x �→ m
∣∣} ,

{∣∣y �→ n
∣∣}} A = C ∪ {{∣∣x �→ m, y �→ n

∣∣}}
and observe that with trees

a = {∣∣x �→ m, y �→ n
∣∣} c = {∣∣x �→ m,

∣∣} ,

we have map id↘ (a, c) = a, a tree that is not in C. This shows that the type
of map must include the requirement that doms(C) = doms(A). (Recall that for
any type T , the set doms(T ) is a set of sets of names.)

A related problem arises when the sets of trees A and C have dependencies
between the names of children and the trees that may appear under those
names. Again, one might naively expect that if l has type C(m) �� A(m) for each
name m, then map l would have type C �� A. Consider, however, the set

A = {{|x �→ m, y �→ p|}, {|x �→ n, y �→ q|}} ,

in which the value m only appears under x when p appears under y, and the set

C = {{|x �→ m, y �→ p|}, {|x �→ m, y �→ q|}, {|x �→ n, y �→ p|}, {|x �→ n, y �→ q|}} ,

where both m and n appear with both p and q. When we consider just the pro-
jections of C and A at specific names, we obtain the same sets of subtrees:
C(x) = A(x) = {{|m|}, {|n|}} and C(y) = A(y) = {{|p|}, {|q|}}. The lens id has type
C(x) �� A(x) and C(y) �� A(y) (and C(z) = ∅ �� ∅ = A(z) for all other names z).
But it is clearly not the case that map id ∈ C �� A.

To avoid this error but still give a type for map that is precise enough to derive
interesting types for lenses defined in terms of map, we require that the source
and target sets in the type of map be closed under the shuffling of their children.
Formally, if T is a set of trees, then the set of shufflings of T , denoted T�, is

T� =
⋃

D∈doms(T )

{|n �→ T (n) | n ∈ D|}

where {|n �→ T (n) | n ∈ D|} is the set of trees with domain D whose children
under n are taken from the set T (n). We say that T is shuffle closed if and only
if T = T�. In the previous example, A� = C� = C, that is, C is shuffle closed
but A is not.

Alternatively, every shuffle-closed set T can be identified with a set of set of
names D and a function f from names to types such that t ∈ T iff dom(t) ∈ D
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and t(n) ∈ f (n) for every name n ∈ dom(t). Formally, the shuffle-closed set T is
defined as follows:

T =
⋃
d∈D

{|n �→ f (n) | n ∈ d |}.

In the situations where map is used, shuffle closure is typically easy to check.
For example, the restriction on tree grammars embodied by W3C Schema im-
plies shuffle closure (informally, the restriction on W3C Schema is analogous
to imposing shuffle closure on the schemas along every path not just at the
root). Additionally, any set of trees whose elements each have singleton do-
mains is shuffle closed. Also, for every set of trees T , the encoding introduced
in Section 7 of lists with elements in T is shuffle closed, which justifies using
map (with recursion) to implement operations on lists. Furthermore, types of
the form {|n �→ T | n ∈ N |} with infinite domain but with the same structure
under each edge, which are heavily used in database examples (where the top-
level names are keys and the structures under them are records), are shuffle
closed.

Another point to note about map is that it does not obey the PUTPUT law.
Consider a lens l and (a, c) ∈ dom(l↘) such that l ↘ (a, c) �= l ↘ (a, �). We
have

(map l ) ↘ ({∣∣n �→ a
∣∣} , ((map l ) ↘ ({||}, {∣∣n �→ c

∣∣})))
= (map l ) ↘ ({∣∣n �→ a

∣∣} , {||})
= {∣∣n �→ l ↘ (a, �)

∣∣}
whereas, {∣∣n �→ l ↘ (a, c)

∣∣} = (map l ) ↘ ({∣∣n �→ a
∣∣} ,

{∣∣n �→ c
∣∣}).

Intuitively, there is a difference between, on the one hand, modifying a child n
and, on the other, removing it and then adding it back. In the first case, any
information in the concrete view that is “projected away” in the abstract view
will be carried along to the new concrete view; in the second case, such informa-
tion will be replaced with default values. This difference seems pragmatically
reasonable so we prefer to keep map and lose PUTPUT.6

A final point of interest is the relation between map and the missing tree �.
The putback function of most lens combinators only results in a putback into
the missing tree if the combinator itself is called on �. In the case of map l ,
calling its putback function on some a and c where c is not the missing tree
may result in the application of the putback of l to � if a has some children
that are not in c. In an earlier variant of map, we dealt with missing children
by providing a default concrete child tree, which would be used when no actual
concrete tree was available. However, we discovered that in practice it is often
difficult to find a single default concrete tree that fits all possible abstract trees,

6Alternatively, we could use a refinement of the type system to track when PUTPUT does hold,
annotating some of the lens combinators with extra type information recording the fact that they
are oblivious, and then give map two types: the one we gave here plus another saying “when map is
applied to an oblivious lens, the result is very well behaved”.
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particularly because of xfork (where different lenses are applied to different
parts of the tree) and recursion (where the depth of a tree is unknown). We tried
parameterizing this default concrete tree by the abstract tree and the lens but
noticed that most primitive lenses ignore the concrete tree when defining the
putback function as enough information is available in the abstract tree. The
natural choice for a concrete tree parameterized by a and l was thus l ↘ (a, �)
for some special tree �. The only lens for which the putback function needs to be
defined on � is const as it is the only lens that discards information. This led us
to the present design where only the const lens (along with other lenses defined
from it such as focus) expects a default tree d . This approach is much more
convenient to program with than the others we tried since one only provides
defaults at the exact points where information is discarded.

We now define a more general form of map that is parameterized on a total
function from names to lenses rather than on a single lens.

(wmap m)↗ c = {∣∣n �→ m(n)↗ c(n) | n ∈ dom(c)
∣∣}

(wmap m) ↘ (a, c) = {∣∣n �→ m(n) ↘ (
a(n), c(n)

) | n ∈ dom(a)
∣∣}

∀C, A⊆T with C = C�, A = A�, doms(C) = doms(A).
∀m ∈ (�n∈N . C(n) �� A(n)).

wmap m ∈ C �� A

∀C, A⊆T with C = C�, A = A�, doms(C) = doms(A).
∀m ∈ (�n∈N . C(n) ⇐⇒� A(n)).

wmap m ∈ C ⇐⇒� A

In the type annotation, we use the dependent type notation m ∈ �n. C(n) ��
A(n) to mean that m is a total function mapping each name n to a well-behaved
lens from C(n) to A(n). Although m is a total function, we will often describe
it by giving its behavior on a finite set of names and adopting the convention
that it maps every other name to id. For example, the lens wmap {x �→ plunge a}
maps plunge a over trees under x and id over the subtrees of every other child.
We can also easily define map as a derived form: map l = wmap (λn ∈ N . l ).

Since the typing of wmap is rather subtle, it is worth stating its well-
behavedness lemma explicitly (and, in the appendix, giving the proof).

LEMMA 5.1 (WELL-BEHAVEDNESS).
∀C, A⊆T with C = C�, A = A�, doms(C) = doms(A).

∀m ∈ (�n∈N . C(n) �� A(n)).
wmap m ∈ C �� A

5.5 Copying and Merging

We next consider two lenses that duplicate information in one direction and
re-integrate (by performing equality checks) in the other.

A view of some underlying data structure may sometimes require that two
distinct subtrees maintain a relationship such as equality. For example, un-
der the subtree representing a manager, Alice, an employee-manager database
may list the name and ID number of every employee in Alice’s group. If Bob
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is managed by Alice, then Bob’s employee record will also list his name and
ID number (as well as other information including a pointer to Alice as his
manager). If Bob’s name changes at a later date, then we expect that it will be
updated (identically) under both his record and Alice’s record. If the concrete
representation contains his name in only a single location, we need to dupli-
cate the information in the get direction. To do this, we need a lens that copies a
subtree and then allows us to transform the copy into the shape that we want.

In the get direction, (copy m n) takes a tree, c, that has no child labeled n. If
c(m) exists, then (copy m n) duplicates c(m) by setting both a(m) and a(n) equal
to c(m). In the putback direction, copy simply discards a(n). The type of copy
ensures that no information is lost because a(m) = a(n).

(copy m n)↗ c = c · {|n �→ c(m)|}
(copy m n) ↘ (a, c) = a\n

∀m, n∈N . ∀C⊆T \{m,n}. ∀D⊆T .

copy m n ∈ (C · {|m �→ D�|}) ⇐⇒� (C · {{|m �→ d , n �→ d |} | d ∈ D�})

Because we want copy to be a total lens, the equality constraint in the ab-
stract type of copy is essential to ensure well-behavedness. To see why, consider
what would happen if the putback function were defined even when a(m) and
a(n) were not equal and copy↘ removed either a(m) or a(n). Then there would
be no way for a subequent application of the get function to restore the discarded
information. Consequently, PUTGET would be violated.

Unfortunately, because of this constraint, the set of lenses that can be
validly composed to the right of a copy is also restricted—the composed lenses
must respect the equality. As an example of what can go wrong, consider
(copy a b; prune b {||}) and suppose that we want to assign it a lens typing with
concrete component {|a �→ D|}. A simple calculation shows that get function be-
haves like id: the lens first copies a to b and then prunes away b. We run into
problems, however, if we evaluate (copy a b; prune b {||}) ↘ ({|a �→ d1|}, {|a �→ d2|}

)
with d1 �= d2. Unwinding the composition, we evaluate (copy a b)↘ with an ab-
stract argument {|a �→ d1, b �→ d2|}. As argued earlier, the copy lens cannot be
both defined and well-behaved on such an abstract argument because the copied
data is not identical. As the example demonstrates, the lenses composed after a
copy must preserve the equality of the copied data. Otherwise we cannot ensure
that the type requirement a(m) = a(n) will be satisfied.

In our intended application, using lenses to build synchronizers for tree-
structured data, we have not found a need for copy. This is not surprising
because if a concrete representation demands that some invariant hold within
the data structure, we assume that (1) each application will locally maintain the
invariants in its own representation, and (2) the function of a synchronizer is to
simply propagate changes from one well-formed replica to another. Moreover,
if one field in a concrete representation is derivable from another (or a set of
other fields), then we need not expose both fields in the abstract view. Instead,
we can merge the fields (see the following). Any change to the merged field
will be pushed back down to all the derived fields in the concrete view. Thus,
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merge, the inverse of copy makes more sense for the views manipulated by a
data synchronizer.

By contrast, some have argued for the need for more powerful forms of copy
in settings such as editing a user-friendly view of a structured document [Hu
et al. 2004; Mu et al. 2004a]. Consider a situation where a user edits a view of
a document in which a table of contents is automatically generated from the
section headings appearing in the source text (i.e., the concrete view is just
some structured text, while the abstract view contains the text plus the table of
contents). One might feel that adding a new section to the text in the abstract
view should cause an entry to be added to the table of contents and, similarly,
that adding an entry to the table of contents should create an empty section in
the text. Such functionality is not consistent with our PUTGET law: both adding
a section heading and adding an entry in the table of contents will result in the
same concrete document after a putback. Such a putback function is not injective
and cannot participate in a lens in our sense. However, in contexts where this
kind of behavior is a primary goal, system designers may be willing to weaken
the promises they make to programmers by guaranteeing weaker properties
than PUTGET. For example, Mu et al. [2004a] only require their bidirectional
transformations to obey a PUTGETPUT law. PUTGETPUT is weaker than PUTGET

in two ways. First, it does not require that l↗(l↘(a, c)) equals a. Rather, it
requires that, if c′ = l↘(a, c) and a′ = l↗(c′), then a′ should contain the same
information as a, in the sense that l↘(a′, c′) = c′. Second, PUTGETPUT allows get
to be undefined over parts of the range of putback; PUTGETPUT is only required
to hold when the get is defined, but no requirements are made on how broadly
get must be defined. (Given that their setting is interactive, it is reasonable to
say, as they do, that if get after some putback is undefined, then the system can
signal the user that the modification to a was illegal and cancel it). Hu et al.
[2004] go a step further and weaken both PUTGET and GETPUT by only requiring
PUTGET when a is l↗(c) and by only requiring GETPUT when c is l↘(a, c′) for
some a and c′.

Conversely, sometimes a concrete representation requires equality between
two distinct subtrees. The following merge lens is one way to preserve this
invariant when the abstract view is updated. In the get direction, merge takes a
tree with two equal branches and deletes one of them. In the putback direction,
merge copies the updated value of the remaining branch to both branches in the
concrete view.

(merge m n)↗ c = c\n

(merge m n) ↘ (a, c) =
{

a · {∣∣n �→ a(m)
∣∣} if c(m) = c(n)

a · {∣∣n �→ c(n)
∣∣} if c(m) �= c(n)

∀m, n∈N . ∀C⊆T \{m,n}. ∀D⊆T .

merge m n ∈ (C · {∣∣m �→ D�, n �→ D�

∣∣}) ⇐⇒� (C · {∣∣m �→ D�

∣∣})

There is some freedom in the type of merge. On one hand, we can give it a precise
type that expresses the intended equality constraint in the concrete view; the
lens is well-behaved and total at that type. Alternatively, we can give it a more
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permissive type (as we do) by ignoring the equality constraint. Even if the two
original branches are unequal, merge is still defined and well-behavedness is
preserved. This is possible because the old concrete view is an argument to the
putback function and can be tested to see whether the two branches were equal
or not in c. If not, then the value in a does not overwrite the value in the deleted
branch, allowing merge to obey PUTGET.

Unlike copy, merge turns out to be quite useful in our synchronization frame-
work. For example, our bookmark synchronizer must deal with the fact that the
XML representation of Apple Safari bookmark files includes the URL data for
every link twice. By merging the appropriate children, we record this depen-
dency and ensure that updates to the URL fields are consistently propagated
to both locations.

6. CONDITIONALS

Conditional lens combinators, which can be used to selectively apply one lens
or another to a view, are necessary for writing many interesting derived lenses.
Whereas xfork and its variants split their input trees into two parts, send each
part through a separate lens, and recombine the results, a conditional lens
performs some test and sends the whole tree(s) through one or the other of its
sublenses.

The requirement that makes conditionals tricky is totality: we want to be
able to take a concrete view, put it through a conditional lens to obtain some
abstract view, and then take any other abstract view of suitable type and push
it back down. But this will only work if either (1) we somehow ensure that the
abstract view is guaranteed to be sent to the same sublens on the way down as
we took on the way up, or else (2) the two sublenses are constrained to behave
coherently. Since we want reasoning about well-behavedness and totality to be
compositional in the absence of recursion (i.e., we want the well-behavedness
and totality of composite lenses to follow just from the well-behavedness and
totality of their sublenses, not from special facts about the behavior of the
sublenses), the second is unacceptable.

Interestingly, once we adopt the first approach, we can give a complete char-
acterization of all possible conditional lenses: we argue that every binary con-
ditional operator that yields well-behaved and total lenses is an instance of the
general cond combinator presented in the following. Since this general cond is
a little complex, however, we start by discussing two particularly useful special
cases.

6.1 Concrete Conditional

Our first conditional, ccond, is parameterized on a predicate C1 on views and two
lenses, l1 and l2. In the get direction, it tests the concrete view c and applies the
get of l1 if c satisfies the predicate and l2 otherwise. In the putback direction,
ccond again examines the concrete view and applies the putback of l1 if it
satisfies the predicate and the putback of l2 otherwise. This is arguably the
simplest possible way to define a conditional: it fixes all of its decisions in the
get direction so the only constraint on l1 and l2 is that they have the same target.
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(Since we are interested in using ccond to define total lenses, this condition can
actually be rather hard to achieve in practice.)

(ccond C1 l1 l2)↗ c =
{

l1↗ c if c ∈ C1
l2↗ c if c �∈ C1

(ccond C1 l1 l2) ↘ (a, c) =
{

l1 ↘ (a, c) if c ∈ C1
l2 ↘ (a, c) if c �∈ C1

∀C, C1, A⊆V. ∀l1 ∈ C∩C1 �� A. ∀l2 ∈ C\C1 �� A.

ccond C1 l1 l2 ∈ C �� A

∀C, C1, A⊆V. ∀l1 ∈ C∩C1 ⇐⇒� A. ∀l2 ∈ C\C1 ⇐⇒� A.

ccond C1 l1 l2 ∈ C ⇐⇒� A

One subtlety in the definition is worth noting. We arbitrarily choose to put-
back � using l2 (because � �∈ C1 for any C1 ⊆ V). We could equally well arrange
the definition so as to send � through l1. In fact, l1 need not be well-behaved
(or even defined) on �; we can construct a well-behaved, total lens using ccond
when l1 ∈ C ∩ C1 ⇐⇒ A and l2 ∈ C \ C1 ⇐⇒� A.

6.2 Abstract Conditional

A quite different way of defining a conditional lens is to make it ignore its
concrete argument in the putback direction, basing its decision whether to use
l1↘ or l2↘ entirely on its abstract argument. This obliviousness to the concrete
argument removes the need for any side conditions relating the behavior of l1
and l2. Everything works fine if we putback using the opposite lens from the
one that we used to get as long as, when we immediately put the result of get,
we use the same lens that we used for the get. Requiring that the sources and
targets of l1 and l2 be disjoint guarantees this.

(acond C1 A1 l1 l2)↗ c =
{

l1↗ c if c ∈ C1
l2↗ c if c �∈ C1

(acond C1 A1 l1 l2) ↘ (a, c) =

⎧⎪⎪⎨
⎪⎪⎩

l1 ↘ (a, c) if a ∈ A1 ∧ c ∈ C1
l1 ↘ (a, �) if a ∈ A1 ∧ c �∈ C1
l2 ↘ (a, c) if a �∈ A1 ∧ c �∈ C1
l2 ↘ (a, �) if a �∈ A1 ∧ c ∈ C1

∀C, A, C1, A1⊆V. ∀l1 ∈ C∩C1 �� A∩A1. ∀l2 ∈ (C\C1) �� (A\A1).
acond C1 A1 l1 l2 ∈ C �� A

∀C, A, C1, A1⊆V. ∀l1 ∈ C∩C1 ⇐⇒� A∩A1. ∀l2 ∈ (C\C1) ⇐⇒� (A\A1).
acond C1 A1 l1 l2 ∈ C ⇐⇒� A

In Section 5.3, we defined the lens rename m n, whose type demands that
each concrete tree have a child named m and that every abstract tree have a
child named n. Using this conditional, we can write a more permissive lens that
renames a child if it is present and otherwise behaves like the identity.
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rename if present m n = acond ({|m �→ T |} · T \{m,n}) ({|n �→ T |} · T \{m,n})
(rename m n)
id

∀n, m ∈ N . ∀C⊆T . ∀D, E⊆(T \{m,n}).
rename if present m n ∈ (

{∣∣m �→ C
∣∣} · D) ∪ E ⇐⇒� (

{∣∣n �→ C
∣∣} · D) ∪ E

6.3 General Conditional

The general conditional, cond, is essentially obtained by combining the behav-
iors of ccond and acond. The concrete conditional requires that the targets of
the two lenses be identical, while the abstract conditional requires that they
be disjoint. Here, we let them overlap arbitrarily, behaving like ccond in the
region where they do overlap (i.e., for arguments (a, c) to putback where a is in
the intersection of the targets) and like acond in the regions where the abstract
argument to putback belongs to just one of the targets. To this we can add one
additional observation, namely, that the use of � in the definition of acond is
actually arbitrary. All that is required is that, when we use the putback of l1,
the concrete argument should come from (C1)� so that l1 is guaranteed to do
something reasonable with it. These considerations lead us to the following
definition.

(cond C1 A1 A2 f21 f12 l1 l2)↗ c =
{

l1↗ c if c ∈ C1
l2↗ c if c �∈ C1

(cond C1 A1 A2 f21 f12 l1 l2) ↘ (a, c) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

l1 ↘ (a, c) if a ∈ A1∩A2 ∧ c ∈ C1
l2 ↘ (a, c) if a ∈ A1∩A2 ∧ c �∈ C1
l1 ↘ (a, c) if a ∈ A1\A2 ∧ c ∈ (C1)�
l1↘(a, f21(c)) if a ∈ A1\A2 ∧ c �∈ (C1)�
l2 ↘ (a, c) if a ∈ A2\A1 ∧ c �∈ C1
l2↘(a, f12(c)) if a ∈ A2\A1 ∧ c ∈ C1

∀C, C1, A1, A2 ⊆ V. ∀l1 ∈ (C∩C1) �� A1. ∀l2 ∈ (C\C1) �� A2.

∀ f21 ∈ (C\C1) → (C∩C1)�. ∀ f12 ∈ (C∩C1) → (C\C1)�.

cond C1 A1 A2 f21 f12 l1 l2 ∈ C �� (A1∪A2)

∀C, C1, A1, A2 ⊆ V. ∀l1 ∈ (C∩C1) ⇐⇒� A1. ∀l2 ∈ (C\C1) ⇐⇒� A2.

∀ f21 ∈ (C\C1) → (C∩C1)�. ∀ f12 ∈ (C∩C1) → (C\C1)�.

cond C1 A1 A2 f21 f12 l1 l2 ∈ C ⇐⇒� (A1∪A2)

When a is in the targets of both l1 and l2, cond↘ chooses between them based
solely on c (as does ccond, whose targets always overlap). If a lies in the range
of only l1 or l2, then cond’s choice of lens for putback is predetermined (as with
acond, whose targets are disjoint). Once l↘ is chosen to be either l1↘ or l2↘, if
the old value of c is not in ran(l↘)�, then we apply a fixup function, f21 or f12,
to c to choose a new value from ran(l↘)�. � is one possible result of the fixup
functions, but in general we can compute a more interesting value as we will
see in the list filter lens defined in Section 7.
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We argued that cond captures all the power of ccond and acond. Indeed,
because of the fixup functions f12 and f21, it captures even more. We now argue,
informally that this is the maximum generality possible, that is, that any well-
behaved and total lens combinator that behaves like a binary conditional can be
obtained as a special case of cond. Of course, the argument hinges on what we
mean when we say that l behaves like a conditional. We would like to capture
the intuition that l should, in each direction, test its input(s) and decide whether
to behave like l1 or l2. In the get direction, there is little choice about how to
say this. Since there is just one argument, the test just amounts to testing
membership in a set (predicate) C1. In the putback direction, there is some
apparent flexibility since the test might investigate both arguments. However,
the requirements of well-behavedness (and the feeling that a conditional lens
should be parametric in l1 and l2, in the sense that the choice between l1 and l2
should not be made by investigating their behavior), actually eliminate most of
this flexibility. If, for example, the abstract input a falls in a ∈ A1∩A2, then the
choice of whether to apply l1↘ or l2↘ is fully determined by c: if c ∈ C1, then it
may be that a = l1↗ c. In this case, using l1↘ guarantees that l ↘ (a, c) = c,
as required by GETPUT, whereas l2↘ gives us no such guarantee; conversely, if
c ∈ C\C1, we must use l2.

Similarly, if a ∈ A1\A2, then we have no choice but to use l1 since l2’s type
does not promise that applying it to an argument of this type will yield a result
in C1. Similarly, if a ∈ A2\A1, then we must use l2. However, here we do have
a little genuine freedom. If a ∈ A1\A2 while c ∈ C\C1, then by the type of l2,
there is no danger that a = l2↗ c. In order to apply l1, we need some element
of (C1)� to use as the concrete argument, but it does not matter which one we
pick, and conversely for l2. The fixup functions f21 and f12 cover all possible
(deterministic) ways of making this choice based on the given c. It is possible to
be slightly more general by making f21 and f12 take both a and c as arguments,
but pragmatically there seems little point in doing this, since either l1↘ or l2↘
is going to be called on their result, and these functions can just as well take a
into account.

7. DERIVED LENSES FOR LISTS

XML and many other concrete data formats make heavy use of ordered lists.
We describe in this section how we can represent lists as trees, using a standard
cons-cell encoding, and introduce some derived lenses to manipulate them. We
begin with very simple lenses for projecting the head and tail of a list. We then
define recursive lenses implementing some more complex operations on lists:
mapping, reversal, grouping, concatenating, and filtering. We give the proofs of
the well-behavedness and totality lemmas (in Appendix A) for these recursive
lenses to demonstrate how the reasoning principles developed in Section 3 can
be applied to practical examples.

7.1 Encoding

Definition 7.1. A tree t is said to be a list if and only if either it is empty or
it has exactly two children, one named *h and another named *t, and t(*t) is
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also a list. We use the lighter notation [t1 . . . tn] for the tree⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣∣∣∣∣
*h �→ t1

*t �→
⎧⎨
⎩
∣∣∣∣∣∣
*h �→ t2

*t �→
{∣∣∣∣. . . �→

{∣∣∣∣*h �→ tn

*t �→ {||}
∣∣∣∣
}∣∣∣∣

}∣∣∣∣∣∣
⎫⎬
⎭

∣∣∣∣∣∣∣∣

⎫⎪⎪⎬
⎪⎪⎭ .

In types, we write [] for the set {{||}} containing only the empty list, C :: D for the
set {|*h �→ C, *t �→ D|} of cons-cell trees whose head belongs to C and whose tail
belongs to D, and [C] for the set of lists with elements in C, that is, the smallest
set of trees satisfying [C] = []∪(C ::[C]). We sometimes refine this notation to
describe lists of specific lengths, writing [Di.. j] for the set of lists of Ds whose
length is at least i and at most j , and writing [Di] for the set of lists whose
length is exactly i (i.e., [Di..i]). Given two list values, l1 and l2, the set of lists
denoted by the interleaving l1&l2 consists of all the lists formed by interleaving
the elements of l1 with the elements of l2 in an arbitrary fashion. For example,
[a, b]&[c] is the set {[a, b, c], [a, c, b], [c, a, b]}. We lift the interleaving
operator to list types in the obvious way: the interleaving of two list types, [B]
and [C], is the union of all the interleavings of lists belonging to [B] with lists
belonging to [C]. Similarly, we lift the usual append operator, written ++, to list
types: [C]++[D] denotes the set of lists obtained by appending any element of
[C] to any element of [D].

7.2 Head and Tail Projections

Our first list lenses extract the head or tail of a cons cell.

hd d = focus *h {|*t �→ d |}
∀C, D⊆T . ∀d∈D. hd d ∈ (C :: D) ⇐⇒� C

tl d = focus *t {|*h �→ d |}
∀C, D⊆T . ∀d∈C. tl d ∈ (C :: D) ⇐⇒� D

The lens hd expects a default tree, which it uses in the putback direction as the
tail of the created tree when the concrete tree is missing; in the get direction,
it returns the tree under *h. The lens tl works analogously. Note that the
types of these lenses apply to both homogeneous lists (the type of hd implies
∀C⊆T . ∀d∈[C]. hd d ∈ [C] ⇐⇒� C) as well as cons cells whose head and tail
have unrelated types; both possibilities are used in the type of the bookmark
lens in Section 8. The types of hd and tl follow from the type of focus.

7.3 List Map

The list map lens applies a lens l to each element of a list.

list map l = wmap {*h �→ l , *t �→ list map l }
∀C, A⊆T . ∀l ∈ C �� A. list map l ∈ [C] �� [A]

∀C, A⊆T . ∀l ∈ C ⇐⇒� A. list map l ∈ [C] ⇐⇒� [A]
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The get direction applies l to the subtree under *h and recurses on the subtree
under *t. The putback direction uses l↘ on corresponding pairs of elements
from the abstract and concrete lists. The result has the same length as the
abstract list; if the concrete list is longer, the extra tail is thrown away. If it is
shorter, each extra element of the abstract list is putback into �.

Since list map is our first recursive lens, it is worth noting how recursive
calls are made in each direction. The get function of the wmap lens simply applies
l to the head and list map l to the tail until it reaches a tree with no children.
Similarly, in the putback direction, wmap applies l to the head of the abstract
tree and either the head of the concrete tree (if it is present) or �, and it applies
list map l to the tail of the abstract tree and the tail of the concrete tree (if it
is present) or �. In both directions, the recursive calls continue until the entire
tree—concrete (for the get) or abstract (for the putback)—has been traversed.
(The recursion is controlled by the abstract argument in the putback direction
because the map combinator uses the children of the abstract tree to determine
how many times to call its argument lens.)

Because list map is defined recursively, proving it is well-behaved requires
just a little more work than than for nonrecursive derived lenses: we need to
show that it has a particular type assuming that the recursive use of list map
has the same type. This is no surprise: exactly the same reasoning process is
used in typing recursive functional programs.

Recall that the type of wmap requires that both sets of trees in its type be
shuffle closed. To prove that list map is well-behaved and total, we will need a
lemma showing that cons-cell and list types are shuffle closed.

LEMMA 7.2. Let S, T⊆T . Then

(1) (S ::T ) = (S ::T )�

(2) [T] = [T]�.

With these pieces in hand, the well-behavedness lemma follows by a straight-
forward calculation using the type of wmap.

LEMMA 7.3 (WELL-BEHAVEDNESS).
∀C, A⊆T . ∀l ∈ C �� A. list map l ∈ [C] �� [A]

The proof of totality for list map is more interesting. We use Corollary
3.17(2), which requires that we (1) identify two chains of types, ∅ = C0 ⊆
C1 ⊆ . . . and ∅ = A0 ⊆ A1 ⊆ . . . , and (2) from k ∈ Ci ⇐⇒� Ai, prove that f (k) ∈
Ci+1 ⇐⇒� Ai+1 for all i. We can then conclude that fix( f ) ∈ ⋃

i Ci ⇐⇒� ⋃
i Ai. For

list map, we choose increasing chains of types as follows:

Ci = ∅ ⊆ [] ⊆ C ::[] ⊆ C ::C ::[] ⊆ . . .

Ai = ∅ ⊆ [] ⊆ A ::[] ⊆ A :: A ::[] ⊆ . . .

The full argument is given in the proof of Lemma 7.4 in Appendix A.

LEMMA 7.4 (TOTALITY). ∀C, A⊆T . ∀l ∈ C ⇐⇒� A. list map l ∈ [C] ⇐⇒� [A]
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7.4 Reverse

Our next lens reverses the elements of a list. The algorithm we use to implement
list reversal runs in quadratic time, we reverse the tail of the list and then
use an auxiliary lens to rotate the head to the end of the reversed tail. Before
presenting the list reverse lens, we describe this auxiliary lens, called rotate.

rotate = acond ([] ∪ (D ::[])) ([] ∪ (D ::[]))
id
(rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*h} id (rename tmp *h; rotate; plunge *t))

∀D⊆T . rotate ∈ [D] ⇐⇒� [D]

In the get direction, rotate has two cases. If the list is empty or a singleton,
the acond applies id which returns the original empty or singleton list unmod-
ified. Otherwise, it (1) renames the head to tmp; (2) hoists up the tail, which
yields children *h and *t since the list is neither empty nor a singleton; and
(3) splits the tree in two using fork, applying the id lens to the part of the tree
consisting of the single child *h (i.e., the second element in the original list),
and puts the tmp element at the end of the list. To do this, it first renames tmp
back to *h, yielding a list whose head is the head of the original list and whose
tail is the tail of the tail of the original list. The recursive call to rotate puts
the head of this list to the end of the list, yielding the original list with two
differences: the first element is at the end and the second element not present.
Finally, the resulting list is plunged under *t, and (after the fork) the result is
concatenated with the original second element.

The putback direction also has two cases, corresponding to the two arms of
the acond lens. It first checks whether the abstract view is the empty list or a
singleton list. If so, then it applies the id lens which returns the abstract list
unchanged. Otherwise, it applies the three steps just given in reverse order: it
first splits the abstract and concrete lists as in the get direction, passing the
head through the id lens and partially rotating the tail. To do this, it hoists the
tail tag, recursively applies rotate (bringing the last element to the head of this
list), and renames *h to tmp. The result after the fork is the original list (under
the names *h and *t) without its original last element concatenated with the
last element under the name tmp. Next the lens hoist nonunique plunges the
*h and *t children under *t. Finally, tmp is renamed back to *h. This has
the effect of bringing the last element of the abstract list to the head of the
result and shifting the position of every other element by one.

The well-behavedness proof is a simple calculation using Corollary 3.17(1)
and the types of the lenses that make up rotate.

LEMMA 7.5 (WELL-BEHAVEDNESS). ∀D⊆T . rotate ∈ [D] �� [D]

The totality lemma is proved using Corollary 3.17(2) after establishing, by
induction on i that rotate ∈ [Di] ⇐⇒� [Di].

LEMMA 7.6 (TOTALITY). ∀D⊆T . rotate ∈ [D] ⇐⇒� [D]
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Using rotate, the definition of list reverse is straightforward.

list reverse = wmap {*t �→ list reverse}; rotate

∀D⊆T . list reverse ∈ [D] ⇐⇒� [D]

In the get direction, we simply reverse the tail and rotate the head element to
the end of the list. In the putback direction, we perform these steps in reverse
order, first rotating the last element of the list to the head and then reversing
the tail. Note also that list reverse behaves like the identity when it is applied
to the empty list, that is, {||}, since the get and putback components of wmap and
rotate each map {||} to {||}.

The algorithm for computing the reversal of a list shown here runs in
quadratic time. Interestingly, we have not been able to code the familiar, linear-
time algorithm as a derived lens (of course, we could introduce a primitive lens
for reversing lists that uses the efficient implementation internally, but it is
more interesting to try to write the efficient version using our combinators).
One difficulty arises if we use an accumulator to store the result: the putback
function of such a transformation would be noninjective and so could not satisfy
PUTGET. To see this, consider putting the tree containing [c] under the accu-
mulator child and [b a] as the rest of the list. This will yield the same result,
[a b c], as putting back a tree containing [] under the accumulator child and
[a b c] as the rest of the list.

The well-behavedness lemma follows straightforwardly from the types of
wmap and rotate, using Corollary 3.17(1).

LEMMA 7.7 (WELL-BEHAVEDNESS). ∀D⊆T . list reverse ∈ [D] �� [D]

For the totality lemma, we use Corollary 3.17(2) after proving by induction
on i, that list reverse ∈ [Di] ⇐⇒� [Di] for all i.

LEMMA 7.8 (TOTALITY). ∀D⊆T . list reverse ∈ [D] ⇐⇒� [D]

7.5 Grouping

Next we give the definition of a grouping lens that, in the get direction, takes
a list of Ds and produces a list of lists of Ds where the elements have been
grouped in pairs. It is used in our bookmark synchronizer as part of a trans-
formation that takes dictionaries of user preferences stored in the particular
XML format used by Apple’s Safari browser and yields trees in a simplified
abstract format. When the concrete list has an even number of elements, the
behavior group lens is simple, for instance, it maps [d1, d2, d3, d4, d5, d6] to
[[d1, d2], [d3, d4], [d5, d6]]. When there are an odd number of elements in
the list, group places the final odd element in a singleton list, for example, it
maps [d1, d2, d3] to [[d1, d2], [d3]]. The typing for group describes both the
odd and even case.

Because it explicitly destroys and builds up cons cells, the definition of group
is a little bit longer than the lenses we have seen so far. We explain the behavior
of each part of the lens in detail.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 17, Publication date: May 2007.



Combinators for Bidirectional Tree Transformations • 35

group =
acond [][]
id
(acond (D ::[]) ((D ::[]) ::[])

(plunge *h; add *t [])
(rename *h tmp;
hoist nonunique *t {*h, *t};
fork {*t}

(map group)
(xfork {*h } {*t} (add *t {||}; plunge *t) (rename tmp *h);
plunge *h)))

∀D⊆T group ∈ [D] ⇐⇒� [D :: D ::[]]++([] ∪ ((D ::[]) ::[]))

The get component of group has three cases, one for each branch of the two
acond conditionals. If the concrete list is empty, then group behaves like the first
branch, which is the identity. Otherwise, if the concrete list is a singleton, then
group behaves like the second branch, which plunges the singleton list under *h
and adds a child *t leading to the empty list. That is, it transforms singleton lists
c into the singleton list containing c, {|*h �→ c, *t �→ {||}|}. Otherwise, if neither
of the two previous cases apply, then group behaves like the third branch. There
are three steps. First, it renames the head element, storing it away under a child
named tmp. Next, it hoists up the tail of the list, yielding a tree with children
tmp, *h, and *t (since the list is neither empty nor a singleton). In the third
step, it recursively groups the tail, massages the other tree into a list of length
two, and yields the cons cell made up of these trees as the result.

More specifically, in the third step of the final case, group splits the tree into a
tree with a single child *t and a tree containing the *h and tmp children. It then
recursively groups the tail using (map group). The other tree is split yet again
into *h and tmp. The tree with *h is made into a singleton list by adding a child
*t leading to the empty view, and then plunged under *t. The tree containing
tmp is turned into the head of a cons cell by renaming tmp back to *h. After
the xfork, these two trees are plunged under *h. Thus, {|tmp �→ di, *h �→ d j |}
is transformed into the tree {|*h �→ [di, d j]|}. The final result is obtained by
merging the grouped tail with this head element.

Since each lens used in group is oblivious,7 the putback function is symmetric
with three cases corresponding to the branches of the acond. Its behavior can
be calculated by evaluating the compositions in reverse order.

The well-behavedness of group follows from Corollary 3.17(1) and a simple,
compositional argument using the types of each lens appearing in its definition.

LEMMA 7.9 (WELL-BEHAVEDNESS).
∀D⊆T group ∈ [D] �� [D :: D ::[]]++([] ∪ ((D ::[]) ::[]))

7Although group uses the const lens indirectly via add, it is semantically oblivious. Recall that
(add n {||}) expands into (xfork {}{n} (const {||} {||}; plunge n) id). The type annotation on add ensures
that the putback function is only ever applied to abstract trees that have a child n leading to {||}.
From this, a simple argument shows that both arguments to const↘ are always {||}. As a result, in
this case, the behavior of const↘ does not depend on its concrete argument; the lens is oblivious.
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We prove the totality lemma using Corollary 3.17(2) using the increasing
chains of types:

Ci = ∅ ⊆ [] ⊆ D ::[] ⊆ D :: (D ::[]) ⊆ . . .

Ai = ∅ ⊆ [] ⊆ (D ::[]) ::[] ⊆ (D :: D ::[]) ::[] ⊆ . . .

whose limit is the total type we want to show for group.

LEMMA 7.10 (TOTALITY).
∀D⊆T group ∈ [D] ⇐⇒� [D :: D ::[]]++([] ∪ ((D ::[]) ::[]))

7.6 Concatenation

The concat lens takes a tree t as an argument. It transforms lists containing two
sublists of Ds and concatenates them into a single list using a single element
t to track the position where the first list ends and the second begins. For
example, given the tree [[C, h, r, i, s], [S, m, i, t, h]], the get component of
(concat

{∣∣" " �→ {||}∣∣}) produces the single list [C, h, r, i, s, " ", S, m, i, t, h].
Conversely, the putback function takes a list containing exactly one t and splits
the list in two, producing lists containing the elements to the left and right of
t respectively. The definition is as follows.

concat t = acond ([] ::[D] ::[]) (t ::[D])
(wmap {*h �→ const t [], *t �→ hd []})
(fork {*t} id (hoist *h; rename *t tmp);
fork {*h} id (rename tmp *h; concat t; plunge *t))

∀D⊆T , t ∈ T . with t �∈ D. concat t ∈ [D] ::[D] ::[] ⇐⇒� [D]++(t ::[D])

In the get direction, there are two cases, one for each branch of the acond.
If the concrete list is of the form ([] :: l :: []), where l ∈ [D], then concat t
produces the result (t++l ) by applying (const t []) to the head and (hd [])
to extract l from the tail. Otherwise, the first element of the concrete list
is nonempty and the acond selects the second branch. The first fork splits
the outermost cons cell according to {*t}. The id lens is applied to the tail
component, which has the form {|*t �→ (l2 ::[])|}. The other component has the
form {|*h �→ {|*h �→ d , *t �→ l1|}|}. The edge labeled *h is clipped out using hoist,
yielding children *h and *t (i.e., the head and tail of the first sublist) and the *t
child is renamed to tmp. These two steps yield a tree {|*h �→ d , tmp �→ l1|}. The
second fork splits the tree according to {*h}. The id lens is applied to the tree
{|*h �→ d |}. The other part of the tree is {|tmp �→ l1, *t �→ (l2 ::[])|}. By renam-
ing tmp to *h, recursively concatenating, and plunging the result under *t, we
obtain the tree {|*t �→ (l1++(t ::l2))|}. Combining these two results into a single
tree, we obtain the list (d ::l1)++(t ::l2).

The putback function is oblivious; its behavior is symmetric to the get func-
tion.

Once again, the well-behavedness lemma for concat t follows by a simple,
compositional calculation, using Corollary 3.17(1).

LEMMA 7.11 (WELL-BEHAVEDNESS).
∀D⊆T , t ∈ T . with t �∈ D. concat t ∈ [D] ::[D] ::[] �� [D]++(t ::[D])
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The totality lemma follows from Corollary 3.17(2) using the increasing chains
of types:

Ci = ∅ ⊆ [] ::[D] ::[] ⊆ (D ::[]) ::[D] ::[] ⊆ (D :: D ::[]) ::[D] ::[] ⊆ . . .

Ai = ∅ ⊆ []++(t ::[D]) ⊆ (D ::[])++(t ::[D]) ⊆ (D :: D ::[])++(t ::[D]) ⊆ . . .

whose limit is the total type we want to show for concat t.

LEMMA 7.12 (TOTALITY).
∀D⊆T , t ∈ T . with t �∈ D. concat t ∈ [D] ::[D] ::[] ⇐⇒� [D]++(t ::[D])

7.7 Filter

Our most interesting derived list processing lens, list filter, is parameterized
on two sets of views, D and E, which we assume to be disjoint and nonempty.
In the get direction, it takes a list whose elements belong to either D or E and
projects away those that belong to E, leaving an abstract list containing only
Ds. In the putback direction, it restores the projected-away Es from the concrete
list. Its definition utilizes our most complex lens combinators—wmap and two
forms of conditionals—and recursion, yielding a lens that is well-behaved and
total on lists of arbitrary length.

In the get direction, the desired behavior of list filter D E (for brevity,
let us call it l ) is clear. In the putback direction, things are more interesting
because there are many ways that we could restore projected elements from the
concrete list. The lens laws impose some constraints on the behavior of l↘. The
GETPUT law forces the putback function to restore each of the filtered elements
when the abstract list is put into the original concrete list. For example (letting
d and e be elements of D and E), we must have l ↘ ([d], [e d]) = [e d]. The
PUTGET law forces the putback function to include every element of the abstract
list in the resulting concrete list in the same order, and these elements must be
the only Ds in the result. There is, however, no restriction on the Es when the
abstract tree is not the filtered concrete tree.

In the general case, where the abstract list a is different from the filtered
concrete list l↗ c, there is some freedom in how l↘ behaves. First, it may selec-
tively restore only some of the elements of E from the concrete list (or indeed,
even less intuitively, it might add some new elements of E that it somehow
makes up). Second, it may interleave the restored Es with the Ds from the ab-
stract list in any order as long as the order of the Ds is preserved from a. From
these possibilities, the behavior that seems most natural to us is to overwrite
elements of D in c with elements of D from a, element-wise, until either c or a
runs out of elements of D. If c runs out first, then l↘ appends the rest of the
elements of a at the end of c. If a runs out first, then l↘ restores the remaining
Es from the end of c and discards any remaining Ds in c (as it must to satisfy
PUTGET).

These choices lead us to the following specification for a single step of the
putback part of a recursively defined lens implementing l . If the abstract list
a is empty, then we restore all the Es from c. If c is empty and a is not empty,
then we return a. If a and c are both cons cells whose heads are in D, then
we return a cons cell whose head is the head of a and whose tail is the result
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obtained by recursing on the tails of both a and c. Otherwise (i.e., c has type
E :: ([D]&[E])) we restore the head of c and recurse on a and the tail of c.
Translating this into lens combinators leads to the following definition of a
recursive lens inner filter, which filters lists containing at least one D, and
a top-level lens list filter that handles arbitrary lists of Ds and Es.

inner filter D E =
ccond (E :: ([D1..ω]&[E]))

(tl anyE ; inner filter D E)
(wmap {*h �→ id,

*t �→ (cond [E] [] [D1..ω] fltrE (λc. c++[anyD])
(const [] [])
(inner filter D E))})

list filter D E =
cond [E] [] [D1..ω] fltrE (λc. c++[anyD])

(const [] [])
(inner filter D E)}

∀D, E⊆T . with D ∩ E = ∅ and D �= ∅ and E �= ∅.

inner filter D E ∈ [D1..ω]&[E] ⇐⇒� [D1..ω]
list filter D E ∈ [D]&[E] ⇐⇒� [D]

The “choice operator” anyD denotes an arbitrary element of the (nonempty)
set D.8 The function fltrE is the usual list-filtering function, which for present
purposes we simply assume has been defined as a primitive. (In our actual
implementation, we use list filter↗, but for expository purposes and to sim-
plify the totality proofs, we avoid this extra bit of recursiveness.) Finally, the
function λc. c++[anyD] appends some arbitrary element of D to the right-hand
end of a list c. These “fixup functions” are applied in the putback direction by
the cond lens.

The behavior of the get function of list filter can be described as follows.
If c ∈ [E], then the outermost cond selects the const [] [] lens which produces
[]. Otherwise the cond selects inner filter which uses a ccond instance to test
if the head of the list is in E. If this test succeeds, it strips away the head using
tl and recurses; if not, it retains the head and filters the tail using wmap.

In the putback direction, if a = [], then the outermost cond lens selects
the const[] [] lens with c as the concrete argument if c ∈ [E] and (fltrE c)
otherwise. This has the effect of restoring all of the Es from c. Otherwise, if a �=
[], then the cond instance selects the putback of the inner filter lens, using
c as the concrete argument if c contains at least one D, and (λc. c++[anyD]) c,
which appends a dummy value of type D to the tail of c, if not. The dummy
value, anyD, is required because inner filter expects a concrete argument
that contains at least one D. Intuitively, the dummy value marks the point
where the head of a should be placed.

8We are dealing with countable sets of finite trees here so this construct poses no metaphysical
conundrums; alternatively, but less readably, we could just as well pass list filter an extra
argument d ∈ D.
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To illustrate how all this works, let us step through some examples in detail.
In each example, the concrete type is [D]&[E] and the abstract type is [D].
We will write di and e j to stand for elements of D and E, respectively. To shorten
the presentation, we will write l for list filter D E (i.e., for the cond lens that
it is defined as) and i for inner filter D E. In the first example, the abstract
tree a is [d1], and the concrete tree c is [e1 d2 e2]. At each step, we underline
the term that is simplified in the next step.

l ↘ (a, c) = i ↘ (a, c)
by the definition of cond, as a ∈ [D1..ω] and c ∈ ([D]&[E]) \ [E]

= (tl anyE ; i) ↘ (a, c)
by the definition of ccond, as c ∈ E :: ([D1..ω]&[E])

= (tl anyE ) ↘
(
i ↘

(
a, (tl anyE )↗ c

)
, c

)
by the definition of composition

= (tl anyE ) ↘
(
i ↘ (a, [d2 e2]), c

)
reducing (tl anyE )↗ c

= (tl anyE ) ↘
(
wmap {*h �→ id, *t �→ l } ↘ (a, [d2 e2]), c

)
by the definition of ccond, as [d2 e2] �∈ E :: ([D1..ω]&[E])

= (tl anyE ) ↘
(
d1 :: (l ↘ ([], [e2])), c

)
by the definition of wmap with id↘ (d1, d2) = d1

= (tl anyE ) ↘
(
d1 :: ((const [] []) ↘ ([], [e2])), c

)
by the definition of cond, as [] ∈ [] and [e2] ∈ [E]

= (tl anyE ) ↘ (d1 ::[e2], c)
by the definition of const

= [e1 d1 e2] by the definition of tl.

Our next two examples illustrate how the fixup functions supplied to the
cond lens are used. The first function, fltrE , is used when the abstract list is
empty and the concrete list is not in [E]. Let a = [] and c = [d1 e1].

l ↘ (a, c) = (const [] []) ↘
(
[], fltrE[d1 e1]

)
by the definition of cond, as a = [] but c �∈ [E]

= (const [] []) ↘ ([], [e1])
by the definition of fltrE

= [e1] by definition of const.

The other fixup function, (λc. c++[anyD]), inserts a dummy D element when
list filter is called with a nonempty abstract list and a concrete list whose
elements are all in E. Let a = [d1] and c = [e1] and assume that anyD = d0.

l ↘ (a, c) = i ↘
(
a, (λc. c++[anyD]) c

)
by the definition of cond, as a ∈ [D1..ω] and c ∈ [E]

= i ↘ (a, [e1 d0])
by the definition of (λc. c++[anyD])
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= (tl anyE ; i) ↘ (a, [e1 d0])
by the definition of ccond, as [e1 d0] ∈ E :: ([D1..ω]D&[E])

= (tl anyE ) ↘
(
i ↘

(
a, (tl anyE )↗ [e1 d0]

)
, [e1 d0]

)
by the definition of composition

= (tl anyE ) ↘
(
i ↘ (a, [d0]), [e1 d0]

)
reducing (tl anyE )↗ [e1 d0]

= (tl anyE )

↘
(
wmap {*h �→ id, *t �→ l } ↘ (a, [d0]), [e1 d0]

)
by the definition of ccond, as [d0] �∈ E :: ([D1..ω]&[E])

= (tl anyE ) ↘
(
d1 :: (l ↘ ([], [])), [e1 d0]

)
by the definition of wmap with id↘ (d1, d0) = d1

= (tl anyE ) ↘
(
d1 :: ((const [] []) ↘ ([], [])), [e1 d0]

)
by the definition of cond, as [] ∈ [] and [] ∈ [E]

= (tl anyE ) ↘ (d1 ::[], [e1 d0])
by the definition of const

= [e1 d1] by the definition of tl.

The well-behavedness proof for inner filter is straightforward: we simply
decide on a type for the recursive use of inner filter and then show that, un-
der this assumption, the body of the lens has this type. Since list filter is
not recursive, both its well-behavedness and totality lemmas follow straight-
forwardly from the types of the lenses that are used in its definition.

LEMMA 7.13 (WELL-BEHAVEDNESS).
∀D, E⊆T . with D ∩ E = ∅ and D �= ∅ and E �= ∅.

inner filter D E ∈ [D1..ω]&[E] �� [D1..ω]
list filter D E ∈ [D]&[E] �� [D]

The totality proof for inner filter, on the other hand, is somewhat chal-
lenging, involving detailed reasoning about the behavior of particular subterms
under particular conditions. The proof uses Lemma 3.19 with sequences of sets
of total types

T0 = {(∅, ∅)}
Ti+1 = {([D1..x]&[E0.. y], [D1..x]) | x + y = i}.

The complete argument is given in electronic Appendix A.

LEMMA 7.14 (TOTALITY).
∀D, E⊆T . with D ∩ E = ∅ and D �= ∅ and E �= ∅.

inner filter D E ∈ [D1..ω]&[E] ⇐⇒� [D1..ω]
list filter D E ∈ [D]&[E] ⇐⇒� [D]

8. EXTENDED EXAMPLE: A BOOKMARK LENS

In this section, we develop a larger and more realistic example of programming
with our lens combinators. The example comes from a demo application of our
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data synchronization framework, Harmony, in which bookmark information
from diverse browsers including Internet Explorer, Mozilla, Safari, Camino,
and OmniWeb, is synchronized by transforming each format from its concrete
native representation into a common abstract form. We show here a slightly
simplified form of the Mozilla lens, which handles the HTML-based bookmark
format used by Netscape and its descendants.

The overall path taken by the bookmark data through the Harmony system
can be pictured as follows.

We first use a generic HTML reader to transform the HTML bookmark file into
an isomorphic concrete tree. This concrete tree is then transformed, using the
get direction of the bookmark lens, into an abstract generic bookmark tree. The
abstract tree is synchronized with the abstract bookmark tree obtained from
some other bookmark file, yielding a new abstract tree, which is transformed
into a new concrete tree by passing it back through the putback direction of the
bookmark lens (supplying the original concrete tree as the second argument).
Finally, the new concrete tree is written back out to the filesystem as an HTML
file. We now discuss these transformations in detail.

Abstractly, the type of bookmark data is a name pointing to a value and a
contents, which is a list of items. An item is either a link, with a name and a
url, or a folder, which has the same type as bookmark data. Figure 2 formalizes
these types.

Concretely, in HTML (see Figure 3), a bookmark item is represented by a
<dt> element containing an <a> element whose href attribute gives the link’s
url and whose content defines the name. The <a> element also includes an
add_date attribute, which we have chosen not to reflect in the abstract form
because it is not supported by all browsers. A bookmark folder is represented
by a <dd> element containing an <h3> header (giving the folder’s name) followed
by a <dl> list containing the sequence of items in the folder. The whole HTML
bookmark file follows the standard <head>/<body> form where the contents of
the <body> have the format of a bookmark folder without the enclosing <dd> tag.
(HTML experts will note that the use of the <dl>, <dt>, and <dd> tags here is
not actually legal HTML. This is unfortunate, but the conventions established
by early versions of Netscape have become a de-facto standard.)
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Fig. 2. Abstract bookmark types.

Fig. 3. Sample bookmarks (HTML).

The generic HTML reader and writer know nothing about the specifics of the
bookmark format; they simply transform between HTML syntax and trees in a
mechanical way, mapping an HTML element named tag with attributes attr1
to attrm and subelements subelt1 to subeltn,

<tag attr1="val1" ... attrm="valm">
subelt1 ... subeltn

</tag>

into a tree of this form ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
tag �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

attr1 �→ val1
...

attrm �→ valm

* �→

⎡
⎢⎣
subelt1

...
subeltn

⎤
⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Note that the subelements are placed in a list under a distinguished child named
*. This preserves their ordering from the original HTML file. (The ordering of
subelements is sometimes important, for instance, in the present example, it
is important to maintain the ordering of the items within a bookmark folder.
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Fig. 4. Sample bookmarks (concrete tree).

Fig. 5. Concrete bookmark types.

Since the HTML reader and writer are generic, they always record the ordering
from the original HTML in the tree, leaving it up to whatever lens is applied
to the tree to throw away ordering information where it is not needed.) A leaf
of the HTML document, that is, a parsed-character data element containing a
text string str, is converted to a tree of the form {PCDATA -> str}. Passing the
HTML bookmark file shown in Figure 3 through the generic reader yields the
tree in Figure 4.

Figure 5 shows the type CBookmarks of concrete bookmark structures. For
readability, the type relies on a notational shorthand that reflects the structure
of the encoding of HTML as trees. We write <tag attr1 . . . attrn> C </tag> for
{tag �→ {attr1 �→ Val . . . attrn �→ Val * �→ C}}. Recall that Val is the set of
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Fig. 6. Sample bookmarks (abstract tree).

all values (trees with a single childless child). For elements with no attributes,
this degenerates to simply <tag> C </tag> = {tag �→ {* �→ C}}.

The transformation between this concrete tree and the abstract bookmark
tree shown in Figure 6 is implemented by means of the collection of lenses
shown in Figure 7. Most of the work of these lenses (in the get direction) involves
stripping out various extraneous structure and then renaming certain branches
to have the desired “field names”. Conversely, the putback direction restores the
original names and rebuilds the necessary structure.

To aid in checking well-behavedness, we annotate each lens with its source
and target type, writing ∈ C l �� A. (This infix notation where l is written be-
tween its source and target types instead of the more conventional l ∈ C �� A
looks strange inline but it works well for multiline displays such as Figure 7.)
and annotate each composition with a suitable “cut type,” writing l ; : B k in-
stead of just l ; k.

It is then straightforward to check using the type annotations supplied that
bookmarks ∈ CBookmarks �� AFolder1. (We omit the proof of totality since we
have already seen more intricate totality arguments in Section 7).

In practice, composite lenses are developed incrementally, gradually mas-
saging the trees into the correct shape. Figure 8 shows the process of devel-
oping the link lens by transforming the representation of the HTML under a
<dt> element containing a link into the desired abstract form. At each level,
tree branches are relabeled with rename, undesired structure is removed with
prune, hoist, and/or hd, and then work is continued deeper in the tree via wmap.

The putback direction of the link lens restores original names and structure
automatically by composing the putback directions of the constituent lenses of
link in turn. For example, Figure 9 shows an update to the abstract tree of the
link in Figure 8. The concrete tree beneath the update shows the result of ap-
plying putback to the updated abstract tree. The putback direction of the hoist
PCDATA lens, corresponding to moving from Step (viii) to Step (vii) in Figure 8,
puts the updated string in the abstract tree back into a more concrete tree by
replacing Search-Engine with {|PCDATA -> Search-Engine|}. In the transition
from Step (vi) to Step (v), the putback direction of prune add date {|$today|}
utilizes the concrete tree to restore the value, add date -> 1032458036, pro-
jected away in the abstract tree. If the concrete tree had been �, that is, in
the case of a new bookmark added in the new abstract tree then the default
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Fig. 7. Bookmark lenses.

argument {|$today|} would have been used to fill in today’s date. (Formally, the
whole set of lenses is parameterized on the variable $today which ranges over
names.)

The get direction of the folder lens separates out the folder name and its
contents, stripping out undesired structure where necessary. Finally, we use
wmap to iterate over the contents.
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Fig. 8. Building up a link lens incrementally.

The item lens processes one element of a folder’s contents; this element might
be a link or another folder so we want to either apply the link lens or the folder
lens. Fortunately, we can distinguish them by whether they are contained
within a <dd> element or a <dt> element; we use the wmap operator to wrap
the call to the correct sublens. Finally, we rename dd to folder and dt to link.

The main lens is bookmarks, which (in the get direction) takes a whole
concrete bookmark tree, strips off the boilerplate header information using a
combination of hoist, hd, and tl, and then invokes folder to deal with the rest.
The huge default tree supplied to the tl lens corresponds to the head tag of the
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Fig. 9. Update of abstract tree and resulting concrete tree.

HTML document, which is filtered away in the abstract bookmark format. This
default tree would be used to recreate a well-formed head tag if it was missing
in the original concrete tree.

9. LENSES FOR RELATIONAL DATA

We close our technical development by presenting a few additional lenses that
we use in Harmony to deal with preparing relational data—trees (or portions
of trees) consisting of lists of records—for synchronization. These lenses do
not constitute a full treatment of view update for relational data but may be
regarded as a small step in that direction. (A later and more comprehensive
proposal is reported in Bohannon et al. [2006]). In particular, the join lens
performs a transformation related to the outer join operation in database query
languages.

9.1 Flatten

The most critical (and complex) of these lenses is flatten, which takes an
ordered list of “keyed records” and flattens it into a bush as in the following
example.

flatten↗⎡
⎢⎢⎣

{∣∣∣∣Pat �→
{∣∣∣∣Phone �→333-4444

URL �→http://pat.com

∣∣∣∣
}∣∣∣∣

}
{∣∣∣∣Chris �→

{∣∣∣∣Phone �→888-9999

URL �→http://x.org

∣∣∣∣
}∣∣∣∣

}
⎤
⎥⎥⎦=

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣∣∣∣∣
Pat �→

[{∣∣∣∣Phone �→333-4444

URL �→http://pat.com

∣∣∣∣
}]

Chris �→
[{∣∣∣∣Phone �→888-9999

URL �→http://x.org

∣∣∣∣
}]

∣∣∣∣∣∣∣∣

⎫⎪⎪⎬
⎪⎪⎭

The importance of this transformation in the setting of the Harmony system
is that it makes the intended alignment of the data structurally obvious. This
frees Harmony’s synchronization algorithm from needing to understand that,
although the data is presented in an ordered fashion, order is actually not
significant here. Synchronization simply proceeds childwise, that is, the record
under Pat is synchronized with the corresponding record under Pat from the
other replica and similarly for Chris. If one of the replicas happens to place
Chris before Pat in its concrete, ordered form, exactly the same thing happens.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 17, Publication date: May 2007.



48 • J. N. Foster et al.

The flatten lens handles concrete lists in which the same key appears more
than once by placing all the records with the same key (in the same order as
they appear in the concrete view) in the list under that key in the abstract
view.

flatten↗⎡
⎢⎢⎢⎢⎢⎢⎢⎣

{∣∣∣∣Pat�→
{∣∣∣∣Phone�→333-4444

URL�→http://pat.com

∣∣∣∣
}∣∣∣∣

}
{∣∣∣∣Chris�→

{∣∣∣∣Phone�→888-9999

URL�→http://x.org

∣∣∣∣
}∣∣∣∣

}
{∣∣∣∣Pat�→

{∣∣∣∣Phone�→123-4321

URL�→http://p2.com

∣∣∣∣
}∣∣∣∣

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣∣∣∣∣

Pat�→

⎡
⎢⎢⎣

{∣∣∣∣Phone�→333-4444

URL�→http://pat.com

∣∣∣∣
}

{∣∣∣∣Phone�→123-4321

URL�→http://p2.com

∣∣∣∣
}

⎤
⎥⎥⎦

Chris�→
[{∣∣∣∣Phone�→888-9999

URL�→http://x.org

∣∣∣∣
}]

∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

In the putback direction, flatten distributes elements of each list from the
abstract bush into the concrete list, maintaining their original concrete posi-
tions. If there are more abstract elements than concrete ones, the extras are
simply appended at the end of the resulting concrete list in some arbitrary order
using the auxiliary function listify.

listify({||}) = []
listify(t) = {∣∣k �→ tk1

∣∣} :: · · · ::
{∣∣k �→ tkn

∣∣} :: listify(t\k)
where k = anydom(t) and t(k) = [tk1, . . . , tkn]

In the type of flatten, we write AListK (D) for the set of lists of singleton
views of the form {|k �→ d |}, where k ∈ K is a key and d ∈ D is the value of
that key, that is, AListK (D) is the smallest set of trees satisfying AListK (D) =
[] ∪ ({{|k �→ D|} | k ∈ K } ::AListK (D)).

flatten↗ c =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{||} if c = []
a′ + {∣∣k �→ d :: []

∣∣} if c = {∣∣k �→ d
∣∣} :: c′

and flatten↗ c′ = a′ with k �∈ dom(a′)
a′ + {∣∣k �→ d :: s

∣∣} if c = {∣∣k �→ d
∣∣} :: c′

and flatten↗ c′ = a′ + {∣∣k �→ s
∣∣}

flatten↘ (a, c) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

listify(a) if c = [] or c = �{∣∣k �→ d ′∣∣} :: r if c = {∣∣k �→ d
∣∣} :: c′

and a(k) = d ′ :: []
and r = flatten↘ (

a\k , c′){∣∣k �→ d ′∣∣} :: r if c = {∣∣k �→ d
∣∣} :: c′

and a(k) = d ′ :: s with s �= []
and r = flatten↘ (

a\k + {∣∣k �→ s
∣∣} , c′)

r if c = {∣∣k �→ d
∣∣} :: c′

and k �∈ dom(a)
and r = flatten↘ (

a, c′)
∀K ⊆N . ∀D⊆T .

flatten ∈ AListK (D) ⇐⇒�
{∣∣∣K ?�→ [D1..ω]

∣∣∣}
ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 17, Publication date: May 2007.



Combinators for Bidirectional Tree Transformations • 49

This definition can be simplified if we assume that all the ks in the concrete
list are pairwise different, that is, that they are truly keys. In this case, the
abstract view need not be a bush of lists; each k can simply point directly to
its associated subtree from the concrete list. In practice, this assumption is
often reasonable. The concrete view is a (linearized) database and the ks are
taken from a key field in each record. However, the type of this disjoint flatten
becomes more complicated to write down since it must express the constraint
that in the concrete list each k occurs at most once. Since we eventually intend
to implement a mechanical typechecker for our combinators, we prefer to use
the more complex definition with the more elementary type.

An obvious question is whether either variant of flatten can be expressed
in terms of more primitive combinators plus recursion as we did for the list
mapping, reversing, and filtering derived forms in Section 7. We feel that this
ought to be possible, but we have not yet succeeded in doing it.

One final point about flatten is that it does not obey PUTPUT. Let

a1 = {∣∣a �→ [{||}], b �→ [{||}]∣∣} a2 = {∣∣b �→ [{||}]∣∣} c = [
a, b

]
.

If flatten were very well-behaved, then we would have

flatten↘ (a1, flatten↘ (a2, c)) = flatten↘ (a1, c).

However, the left-hand side of the equality is [b, a] but the right-hand side is
[a, b].

9.2 Pivot

The lens pivot n rearranges the structure at the top of a tree, transforming{∣∣∣∣n �→ k
t

∣∣∣∣
}

to
{∣∣k �→ t

∣∣} . Intuitively, the value k (i.e., {|k �→ {||}|}) under n represents

a key k for the rest of the tree t. The get function of pivot returns a tree where k
points directly to t. The putback function performs the reverse transformation,
ignoring the old concrete tree.

We use pivot heavily in Harmony instances where the data being synchro-
nized is relational (sets of records) but its concrete format is ordered (e.g., XML).
We first apply pivot within each record to bring the key field to the outside.
Then we apply flatten to smash the list of keyed records into a bush indexed
by the keys. As an example, consider the following transformation on a concrete
piece of data where l = list map (pivot Name)

l↗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎨
⎩
∣∣∣∣∣∣
Name �→Pat

Phone �→333-4444

URL �→http://pat.com

∣∣∣∣∣∣
⎫⎬
⎭⎧⎨

⎩
∣∣∣∣∣∣
Name �→Chris

Phone �→888-9999

URL �→http://x.org

∣∣∣∣∣∣
⎫⎬
⎭⎧⎨

⎩
∣∣∣∣∣∣
Name �→Pat

Phone �→123-4321

URL �→http://p2.com

∣∣∣∣∣∣
⎫⎬
⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

{∣∣∣∣Pat �→
{∣∣∣∣Phone �→333-4444

URL �→http://pat.com

∣∣∣∣
}∣∣∣∣

}
{∣∣∣∣Chris �→

{∣∣∣∣Phone �→888-9999

URL �→http://x.org

∣∣∣∣
}∣∣∣∣

}
{∣∣∣∣Pat �→

{∣∣∣∣Phone �→123-4321

URL �→http://p2.com

∣∣∣∣
}∣∣∣∣

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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which, as we saw, can then be flattened into

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣∣∣∣∣

Pat �→

⎡
⎢⎢⎣

{∣∣∣∣Phone �→333-4444

URL �→http://pat.com

∣∣∣∣
}

{∣∣∣∣Phone �→123-4321

URL �→http://p2.com

∣∣∣∣
}

⎤
⎥⎥⎦

Chris �→
[{∣∣∣∣Phone �→888-9999

URL �→http://x.org

∣∣∣∣
}]

∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

In the type of pivot, we extend our conventions about values (i.e., the fact
that we write k instead of

{∣∣k �→ {||}∣∣}) to types. If K ⊆ N is a set of names, then{∣∣n �→ K
∣∣} means {{∣∣n �→ k

∣∣} | k ∈ K }—that is, {{∣∣n �→ {∣∣k �→ {||}∣∣}∣∣} | k ∈ K }.

(pivot n)↗ c = {∣∣k �→ t
∣∣} if c =

{∣∣∣∣n �→ k
t

∣∣∣∣
}

(pivot n) ↘ (a, c) =
{∣∣∣∣n �→ k

t

∣∣∣∣
}

if a = {∣∣k �→ t
∣∣}

∀n∈N . ∀K ⊆N . ∀C⊆(T \n).
pivot n ∈ (

{∣∣n �→ K
∣∣} · C) ⇐⇒� {{∣∣k �→ C

∣∣} | k ∈ K }

9.3 Join

Our final lens combinator, based on an idea by Daniel Spoonhower [2004], is
inspired by the full outer join operator from databases. For example, applying
the get component of l = (join addr phone) to a tree containing a collection of
addresses and a collection of phone numbers (both keyed by names) yields a
tree where the address and phone information is collected under each name.

l↗

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣∣∣∣

addr �→
⎧⎨
⎩
∣∣∣∣∣∣
Chris �→Paris
Kim �→Palo Alto
Pat �→Philadelphia

∣∣∣∣∣∣
⎫⎬
⎭

phone �→
⎧⎨
⎩
∣∣∣∣∣∣
Chris �→111-1111
Pat �→222-2222
Lou �→333-3333

∣∣∣∣∣∣
⎫⎬
⎭

∣∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Chris �→
{∣∣∣∣addr �→Paris
phone �→111-2222

∣∣∣∣
}

Kim �→{∣∣addr �→Palo Alto
∣∣}

Pat �→
{∣∣∣∣addr �→Philadelphia
phone �→222-2222

∣∣∣∣
}

Lou �→{∣∣phone �→333-3333
∣∣}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Note that no information is lost in this transformation: names that are miss-
ing from either the addr or phone collection are mapped to views with just a
phone or addr child. In the putback direction, join performs the reverse trans-
formation, splitting the addr and phone information associated with each name
into separate collections. (The transformation is bijective; since no information
is lost by get, the putback function can ignore its concrete argument.)
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(join m n)↗ c =
{∣∣∣∣k �→

{∣∣∣∣m �→ c(m)(k)
n �→ c(n)(k)

∣∣∣∣
}

| k ∈ dom(c(m)) ∪ dom(c(n))
∣∣∣∣
}

(join m n) ↘ (a, c) =
{∣∣∣∣m �→ {∣∣k �→ a(k)(m) | k ∈ dom(a)

∣∣}
n �→ {∣∣k �→ a(k)(n) | k ∈ dom(a)

∣∣}
∣∣∣∣
}

∀K ⊆N . ∀T⊆T .

join m n ∈
⎧⎨
⎩
∣∣∣∣∣∣
m �→

{∣∣∣K ?�→ T
∣∣∣}

n �→
{∣∣∣K ?�→ T

∣∣∣}
∣∣∣∣∣∣
⎫⎬
⎭ ⇐⇒�

{∣∣∣∣∣K ?�→
{∣∣∣∣∣m �→ T

n
?�→ T

∣∣∣∣∣
}

∪
{∣∣∣∣∣m

?�→ T
n �→ T

∣∣∣∣∣
}∣∣∣∣∣

}

10. RELATED WORK

Our lens combinators evolved in the setting of the Harmony data synchro-
nizer. The overall architecture of Harmony and the role of lenses in building
synchronizers for various forms of data are described elsewhere [Foster et al.
2006; Pierce et al. 2003], along with a detailed discussion of related work on
synchronization.

Our foundational structures, lenses and their laws, are not new; closely-
related structures have been studied for decades in the database com-
munity. However, our treatment of these structures is arguably simpler
(transforming states rather than update functions) and more refined (treating
well-behavedness as a form of type assertion). Our formulation is also novel in
addressing the issues of totality, offering programmers a static guarantee that
lenses cannot fail at runtime, and of continuity, supporting a rich variety of
surface language structures including definition by recursion.

The idea of defining programming languages for constructing bidirectional
transformations of various sorts has also been explored previously in diverse
communities. We appear to be the first to take totality as a primary goal
(while connecting the language with a formal semantic foundation, choosing
primitives that can be combined into composite lenses whose totality is guar-
anteed by construction), and the first to emphasize types, that is, composi-
tional reasoning about well-behavedness and totality, as an organizing design
principle.

10.1 Foundations of View Update

The foundations of view-update translation were studied intensively by
database researchers in the late ’70s and ’80s. This thread of work is closely
related to our semantics of lenses in Section 3. We discuss the main similari-
ties and differences between our work and these classical approaches to view
update, in particular Dayal and Bernstein’s notion [1982] of “correct update
translation,” Bancilhon and Spyratos’s [1981] notion of “update translation un-
der a constant complement,” Gottlob et al.’s “dynamic views” [1988], and the
basic view update and “relational triggers” mechanisms offered by commercial
database systems such as Oracle [Fogel and Lane 2005; Lorentz 2005].

The view-update problem concerns translating updates on a view into
“reasonable” updates on the underlying database. It is helpful to structure

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3, Article 17, Publication date: May 2007.



52 • J. N. Foster et al.

the discussion by breaking this broad problem statement down into more spe-
cific questions. First, how is a reasonable translation of an update defined?
Second, what should we do about the possibility that, for some update, there
may be no reasonable way of translating its effect to the underlying database?
And third, how do we deal with the possibility that there are many reasonable
translations from which we must choose? We consider these questions in order.

One can imagine many possible ways of assigning a precise meaning to “rea-
sonable update translation”, but in fact there is a remarkable degree of agree-
ment in the literature with most approaches adopting one of two basic positions.
The stricter of these is enunciated in Bancilhon and Spyratos’s [1981] notion
of complement of a view, which must include at least all information missing
from the view. When a complement is fixed, there exists at most one update of
the database that reflects a given update on the view while leaving the comple-
ment unmodified, that is, translates updates “under a constant complement”.
The constant complement approach has influenced numerous later works in
the area, including recent papers by Lechtenbörger [2003] and Hegner [2004].

The other, more permissive, definition of reasonable is elegantly formulated
by Gottlob et al., who call it dynamic views [1988]. They present a general
framework and identify two special cases, one is formally equivalent to Bancil-
hon and Spyratos’s constant complement translators and the other, which they
advocate on pragmatic grounds, their own dynamic views.

Our notion of lenses adopts the same, more permissive, attitude towards
reasonable behavior of update translation. Indeed, modulo some technical re-
finements, we have sketched that the correspondence is tight: the set of all
well-behaved lenses is isomorphic to the set of dynamic views in the sense of
Gottlob et al. Moreover, the set of very well-behaved lenses is isomorphic to the
set of translators under constant complement in the sense of Bancilhon and
Spyratos.9

Dayal and Bernstein’s [1982] seminal theory of “correct update translation”
also adopts the more permissive position on reasonableness. Their notion of
“exactly performing an update” corresponds, intuitively to our PUTGET law.

9To be precise, we need an additional condition regarding partiality. The frameworks of Bacilhon
and Spyratos [1981] and of Gottlob et al. [1988] are both formulated in terms of translating update
functions on A into update functions on C, that is, their putback functions have type (A −→ A) −→
(C −→ C), while our lenses translate abstract states into update functions on C, that is, our putback
functions have type (isomorphic to) A −→ (C −→ C). Moreover, in both of these frameworks, update
translators (the analog of our putback functions) are defined only over some particular chosen set
U of abstract update functions, not over all functions from A to A, and these update functions may
be composed. Update translators return total functions from C to C. Our putback functions, on the
other hand, are slightly more general as they are defined over all abstract states and return partial
functions from C to C. Finally, the get functions of lenses are allowed to be partial, whereas the
corresponding functions (called views) in the other two frameworks are assumed to be total. In order
to make the correspondences tight, our sets of well-behaved and very well-behaved lenses need to
be restricted to subsets that are also total in a suitable sense and the set of dynamic views should
already include every abstract update functions that are needed and not rely on composition.

A related observation is that, if we restrict both get and putback to be total functions (i.e., putback
must be total with respect to all abstract update functions), then our lens laws (including PUTPUT)
characterize the set C as isomorphic to A × B for some B.
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The pragmatic trade-offs between these two perspectives on reasonable up-
date translations are discussed by Hegner [1990, 2004], who introduces the
term closed view for the stricter constant complement approach and open
view for the looser approach adopted by dynamic views and in the present
work. Hegner himself works in a closed-world framework but notes that both
choices may have pragmatic advantages in different situations, with open-
world useful when the users are aware that they are actually using a view
as a convenient way to edit an underlying database, while closed-world is
preferable when users should be isolated from the existence of the underly-
ing database even at the cost of offering them a more restricted set of possible
updates.

Hegner [2004] also formalizes an additional condition on reasonableness
(which has also been noted by others, for example, Dayal and Bernstein [1982]):
monotonicity of update translations, in the sense that an update that only adds
records from the view should be translated just into additions to the database,
and that an update that adds more records to the view should be translated to
a larger update to the database (and similarly for deletions).

Commercial databases such as Oracle [Fogel and Lane 2005; Lorentz 2005],
SQL Server [Microsoft 2005], and DB2 [International Business Machines
Corporation 2004] typically provide two quite different mechanisms for up-
dating through views. First, some very simple views, defined using select,
project, and a very restricted form of join (where the key attributes in one
relation are a subset of those in the other), are considered inherently updat-
able. For these, the notion of reasonableness is essentially the constant com-
plement position. Alternatively, programmers can support updates to arbitrary
views by adding relational triggers that are invoked whenever an update is at-
tempted on the view and that can execute arbitrary code to update the under-
lying database. In this case, the notion of reasonableness is left entirely to the
programmer.

The second question posed at the beginning of the section was how to deal
with the possibility that there are no reasonable translations for some update.
The simplest response is just to let the translation of an update fail if it sees that
its effect is going to be unreasonable; this is Dayal and Bernstein’s [1982] ap-
proach, for example. Its advantage is that we can determine reasonableness on
a case-by-case basis, allowing translations that usually give reasonable results
but that might fail under rare conditions. The disadvantage is that we lose the
ability to perform updates to the view offline—we need the concrete database
in order to tell whether an update is going to be allowed. Another possibility
is to restrict the set of operations to just the ones that can be guaranteed to
correspond to reasonable translations; this is the position taken by most pa-
pers in the area. A different approach (the one we have taken in this work) is
to restrict the view schema so that arbitrary (schema-respecting) updates are
guaranteed to make sense.

The third question posed was how to deal with the possibility that there may
be multiple reasonable translations for a given update.

One attractive idea is to somehow restrict the set of reasonable translations
so that this possibility does not arise,that is, so that every translatable update
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has a unique translation. For example, under the constant complement ap-
proach, for a particular choice of complement, there will be at most one trans-
lation. Hegner’s [2004] additional condition of monotonicity ensures that (at
least for updates consisting of only inserts or only deletes), the translation of
an update is unique, independent of the choice of complement.

Another possibility is to place an ordering on possible translations of a given
update and choose one that is minimal in this ordering. This idea plays a central
role, for example, in Johnson et al.’s account of view update in the Sketch Data
Model [2001]. Buneman et al. [2002] have established a variety of intractability
results for the problem of inferring minimal view updates in the relational
setting for query languages that include both join and either project or union.

The key idea in the present work is to allow the programmer to describe the
update policy at the same time as the view definition by enriching the relational
primitives with enough annotations to select among a variety of reasonable
update policies.

In the literature on programming languages, laws similar to our lens laws
(but somewhat simpler, dealing only with total get and putback functions) ap-
pear in Oles’ category of state shapes [Oles 1985] and in Hofmann and Pierce’s
work on positive subtyping [1995].

10.2 Languages for Bidirectional Transformations

At the level of syntax, different forms of bidirectional programming have been
explored across a surprisingly diverse range of communities, including pro-
gramming languages, databases, program transformation, constraint-based
user interfaces, and quantum computing. One useful way of classifying these
languages is by the shape of the semantic space in which their transformations
live. We identify three major classes.

—Bidirectional languages, including ours, form lenses by pairing a get function
of type C → A with a putback function of type A×C → C. In general, the get
function can project away some information from the concrete view, which
must then be restored by the putback function.

—In bijective languages, the putback function has the simpler type A → C, with
no concrete argument to refer to. To avoid loss of information, the get and
putback functions must form a (perhaps partial) bijection between C and A.

—Reversible languages go a step further, demanding only that the work per-
formed by any function to produce a given output can be undone by applying
the function in reverse, working backwards from this output to produce the
original input. Here, there is no separate putback function at all: instead, the
get function itself is constructed so that each step can be run in reverse.

In the first class, the work that is fundamentally most similar to ours is
Meertens’s formal treatment of constraint maintainers for constraint-based
user interfaces [1998]. Meertens’s semantic setting is actually even more gen-
eral. He takes get and putback to be relations, not just functions, and his
constraint maintainers are symmetric: get relates pairs from C × A to elements
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of A and putback relates pairs in A × C to elements of C. The idea is that a
constraint maintainer forms a connection between two graphical objects on the
screen so that, whenever one of the objects is changed by the user, the change
can be propagated by the maintainer to the other object such that some desired
relationship between the objects is always maintained. Taking the special case
where the get relation is actually a function (which is important for Meertens
because this is the case where composition (in the sense of our ; combinator)
is guaranteed to preserve well-behavedness), yields essentially our very well-
behaved lenses. Meertens proposes a variety of combinators for building con-
straint maintainers, most of which have analogs among our lenses, but does
not directly deal with definition by recursion. Also, some of his combinators
do not support compositional reasoning about well-behavedness. He considers
constraint maintainers for structured data such as lists as we do for trees, but
he adopts a rather different point-of-view from ours, focusing on constraint
maintainers that work with structures not directly but in terms of the edit
scripts that might have produced them. In the terminology of synchronization,
he switches from a state-based to an operation-based treatment at this point.

Recent work of Mu et al. [2004a] on “injective languages” for view-update-
based structure editors adopts a similar perspective. Although their transfor-
mations obey our GETPUT law, their notion of well-behaved transformations is
informed by different goals than ours, leading to a weaker form of the PUTGET

law. A primary concern is using the view-to-view transformations to simultane-
ously restore invariants within the source view as well as update the concrete
view. For example, an abstract view may maintain two lists where the name
field of each element in one list must match the name field in the corresponding
element in the other list. If an element is added to the first list, then not only
must the change be propagated to the concrete view, it must also add a new
element to the second list in the abstract view. It is easy to see that PUTGET

cannot hold if the abstract view, itself, is (in this sense) modified by the put-
back. Similarly, they assume that edits to the abstract view mark all modified
fields as updated. These marks are removed when the putback lens computes
the modifications to the concrete view, another change to the abstract view that
must violate PUTGET. Consequently, to support invariant preservation within
the abstract view, and to support edit lists, their transformations only obey a
much weaker variant of PUTGET (described in Section 5).

Another paper by Hu et al. [2004] applies a bidirectional programming lan-
guage quite closely related to ours to the design of programmable editors for
structured documents. As in Mu et al. [2004a], they support preservation of lo-
cal invariants in the putback direction. Here, instead of annotating the abstract
view with modification marks, they assume that a putback or a get occurs after
every modification to either view. They use this only-one-update assumption
to choose the correct inverse for the lens that copied data in the get direction
because only one branch can be modified at any given time. Consequently, they
can putback the data from the modified branch and overwrite the unmodified
branch. Here, too, the notion of well-behavedness needs to be weakened as
described in Section 5.
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The TRIP2 system (e.g., Matsuoka et al. [1992]) uses bidirectional trans-
formations specified as collections of Prolog rules as a means of implementing
direct-manipulation interfaces for application data structures. The get and put-
back components of these mappings are written separately by the user.

10.3 Languages for Bijective Transformations

An active thread of work in the program transformation community concerns
program inversion and inverse computation (see, for example, Abramov and
Glück [2000, 2002] and many other papers cited there). Program inversion [Di-
jkstra 1979] derives the inverse program from the forward program. Inverse
computation [McCarthy 1956] computes a possible input of a program from a
particular output. One approach to inverse computation is to design languages
that produce easily invertible expressions, for example, languages that can only
express injective functions where every program is trivially invertible.

In the database community, Abiteboul et al. [1997] defined a declarative lan-
guage of correspondences between parts of trees in a data forest. In turn, these
correspondence rules can be used to translate one tree format into another
through nondeterministic Prolog-like computation. This process assumes an
isomorphism between the two data formats. The same authors Abiteboul et al.
[1998] later defined a system for bidirectional transformations based around
the concept of structuring schemas (parse grammars annotated with semantic
information). Thus their get functions involved parsing, whereas their putbacks
consisted of unparsing. Again, to avoid ambiguous abstract updates, they re-
stricted themselves to lossless grammars that define an isomorphism between
concrete and abstract views.

Ohori and Tajima [1994] developed a statically-typed polymorphic record
calculus for defining views on object-oriented databases. They specifically re-
stricted which fields of a view are updatable, allowing only those with a ground
(simple) type to be updated, whereas our lenses can accommodate structural
updates as well.

A related idea from the functional programming community, called views
[Wadler 1987], extends algebraic pattern matching to abstract data types using
programmer-supplied in and out operators.

10.4 Languages for Reversible Transformations

Our work is the first of which we are aware where totality and compositional
reasoning about totality are taken as primary design goals. Nevertheless, in all
of the languages discussed, there is an expectation that programmers will want
their transformations to be “total enough”—that is, that the sets of inputs for
which the get and putback functions are defined should be large enough for some
given purpose. In particular, we expect that putback functions should accept a
suitably large set of abstract inputs for each given concrete input since the whole
point of these languages is to allow editing through a view. A quite different class
of languages have been designed to support reversible computation in which
the putback functions are only ever applied to the results of the correspond-
ing get functions. While the goals of these languages are quite different from
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ours—they have nothing to do with view update—there are intriguing similar-
ities in the basic approach.

Landauer [1961] observed that noninjective functions were logically irre-
versible, and that this irreversibility requires the generation and dissipa-
tion of some heat-per-machine cycle. Bennet [1973] demonstrated that this
irreversibility was not inevitable by constructing a reversible Turing ma-
chine, showing that thermodynamically reversible computers were plausible.
Baker [1992] argued that irreversible primitives were only part of the problem;
irreversibility at the highest levels of computer usage cause the most difficulty
due to information loss. Consequently, he advocated the design of programs
that conserve information. Because deciding reversibility of large programs is
unsolvable, he proposed designing languages that guaranteed that all well-
formed programs are reversible, that is, designing languages whose primitives
were reversible and whose combinators preserved reversibility. A considerable
body of work has developed around these ideas (e.g., Mu et al. [2004b]).

10.5 Update Translation for Tree Views

There have been many proposals for query languages for trees (e.g., XQuery
[2005] and its forerunners, UnQL, StruQL, and Lorel), but these either do not
consider the view-update problem at all or else handle update only in situations
where the abstract and concrete views are isomorphic.

For example, Braganholo et al. [2001, 2003] studied the problem of updating
relational databases presented as XML. Their solution requires a 1:1 mapping
between XML view elements and objects in the database to make updates un-
ambiguous.

Tatarinov et al. [2001] described a mechanism for translating updates on
XML structures that are stored in an underlying relational database. In this
setting, there is again an isomorphism between the concrete relational database
and the abstract XML view so updates are unambiguous; rather, the problem
is choosing the most efficient way of translating a given XML update into a
sequence of relational operations.

The view-update problem has also been studied in the context of object-
oriented databases. Scholl et al. [1991] restrict the notion of views to queries
that preserve object identity. The view-update problem is greatly simplified in
this setting as the objects contained in the view are the objects of the database,
and an update on the view is directly an update on objects of the database.

10.6 Update Translation for Relational Views

Research on view-update translation in the database literature has tended
to focus on taking an existing language for defining get functions (e.g., re-
lational algebra), and then considering how to infer corresponding putback
functions either automatically or with some user assistance. By contrast, we
have designed a new language in which the definitions of get and putback go
hand-in-hand. Our approach also goes beyond classical work in the relational
setting by directly transforming and updating tree-structured data rather than
flat relations. (Of course, trees can be encoded as relations, but it is not clear how
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our tree-manipulation primitives could be expressed using the recursion-free
relational languages considered in previous work in this area.)

Recent work by Bohannon et al. [2006] extends the framework presented to
obtain lenses that operate natively on relational data. Their lenses are based
on the primitives of classical relational algebra with additional annotations
that specify the desired update policy in the putback direction. They develop a
type system, using record predicates and functional dependencies, to aid com-
positional reasoning about well-behavedness. The chapter on view update in
Date’s textbook [2003] articulates a similar perspective on translating rela-
tional updates.

Masunaga [1984] described an automated algorithm for translating updates
on views defined by relational algebra. The core idea was to annotate where
the semantic ambiguities arise, indicating they must be resolved either with
knowledge of underlying database semantic constraints or by interactions with
the user.

Keller [1985] catalogued all possible strategies for handling updates to a
select-project-join view and showed that these are exactly the set of translations
that satisfy a small set of intuitive criteria. These criteria are:

(1) no database side effects: only update tuples in the underlying database that
appear somehow in the view;

(2) only one-step changes: each underlying tuple is updated at most once;
(3) no unnecessary changes: there is no operationally equivalent translation

that performs a proper subset of the translated actions;
(4) replacements cannot be simplified (e.g., to avoid changing the key, or to

avoid changing as many attributes);
(5) no delete-insert pairs: for any relation, you have deletions or insertions, but

not both (use replacements instead).

These criteria apply to update translations on relational databases, whereas
our state-based approach means only criteria (1), (3), and (4) might apply to
us. Keller [1986] later proposed allowing users to choose an update translator
at view definition time by engaging in an interactive dialog with the system
and answering questions about potential sources of ambiguity in update trans-
lation. Building on this foundation, Barsalou et al. [1991] described a scheme
for interactively constructing update translators for object-based views of rela-
tional databases.

Medeiros and Tompa [1985] presented a design tool for exploring the effects of
choosing a view-update policy. This tool shows the update translation for update
requests supplied by the user; by considering all possible valid concrete states,
the tool predicts whether the desired update would in fact be reflected back into
the view after applying the translated update to the concrete database. Miller
et al. [2001] describe Clio, a system for managing heterogeneous transforma-
tion and integration. Clio provides a tool for visualizing two schemas, specifying
correspondences between fields, defining a mapping between the schemas, and
viewing sample query results. They only consider the get direction of our lenses,
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but their system is somewhat mapping-agnostic so it might eventually be pos-
sible to use a framework like Clio as a user interface supporting incremental
lens programming like that in Figure 8.

Atzeni and Torlone [1996, 1997] described a tool for translating views and
observed that if one can translate any concrete view to and from a metamodel
(shared abstract view), one then gets bidirectional transformations between
any pair of concrete views. They limited themselves to mappings where the
concrete and abstract views are isomorphic.

Complexity bounds have also been studied for various versions of the view-
update inference problem. In one of the earliest, Cosmadakis and Papadim-
itriou [Cosmadakis 1983; Cosmadakis and Papadimitriou 1984] considered the
view-update problem for a single relation, where the view is a projection of the
underlying relation, and showed that there are polynomial time algorithms for
determining whether insertions, deletions, and tuple replacements to a projec-
tion view are translatable into concrete updates. Buneman et al. [2002] estab-
lished a variety of intractability results for the problem of inferring minimal
view updates in the relational setting for query languages that include both
join and either project or union.

The designers of the RIGEL language [Rowe and Schoens 1979] argued that
programmers should specify the translations of abstract updates. However, they
did not provide a way to ensure consistency between the get and putback direc-
tions of their translations.

Another problem that is sometimes mentioned in connection with view-
update translation is that of incremental view maintenance (e.g., Abiteboul
et al. [1998])—efficiently recalculating an abstract view after a small update
to the underlying concrete view. Although the phrase “view-update problem”
is sometimes, confusingly, used for work in this domain, there is little techni-
cal connection with the problem of translating view updates to updates on an
underlying concrete structure.

11. CONCLUSIONS AND ONGOING WORK

We have worked to design a collection of combinators that fit together in a sen-
sible way and that are easy to program with and reason about. Starting with
lens laws that define reasonable behavior, adding type annotations, and proving
that each of our lenses is total, has imposed strong constraints on our design of
new lenses, constraints that paradoxically make the design process easier. In
the early stages of the Harmony project, working in an underconstrained design
space, we found it extremely difficult to converge on a useful set of primitive
lenses. Later, when we understood how to impose the framework of type dec-
larations and the demand for compositional reasoning, we experienced a huge
increase in manageability. The types helped not just in finding programming
errors in derived lenses but in exposing design mistakes in the primitives at an
early stage.

Our interest in bidirectional tree transformations arose in the context of the
Harmony data synchronization framework. Besides the bookmark synchronizer
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Fig. 10. Web demo of Safari bookmark lens.

described in Section 8, we have developed prototype synchronizers for calen-
dars, address books, and structured text, as well as a growing library of lens pro-
grams. Building implementations continues to provide valuable stress-testing
for both our combinators and their formal foundations. It also gives us confi-
dence that our lenses are practically useful.

The source code for each of these prototypes, along with our lens compiler
and synchronization engine, can be found on the Harmony Web page [Pierce
et al. 2006]. We have also made the system available as an online Web demo (a
screenshot from the Safari component of our bookmarks portion of this demo is
shown in Figure 10).

11.1 Static Analysis

Naturally, the progress we have made on lens combinators raises a host
of further challenges. The most urgent of these is automated typecheck-
ing. At present, it is the lens programmers’ responsibility to check the well-
behavedness of the lenses that they write. Our compiler has the ability to per-
form simple runtime checking and some debugging using probe points and to
track stack frames. These simple dynamic techniques have proven helpful in
developing and debugging small-to-medium-sized lens programs, but we would
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like to be able to reason statically that a given program is type correct. For-
tunately, the types of the primitive combinators have been designed so that
these checks are both local and essentially mechanical. The obvious next step
is to reformulate the type declarations as a type algebra and find a mechanical
procedure for statically checking (or, more ambitiously, inferring) types.

In the semantic framework of lens types we have developed, the key proper-
ties tracked by the types are well-behavedness and totality. However, there are
other properties of lenses that one might want to track in a type system includ-
ing very well-behavedness, obliviousness, adherence to the conventions about
�, etc. Moreover, there is a natural subsumption relation between these dif-
ferent lens types: for example, every oblivious lens is very well-behaved. Once
basic mechanized type checking for lenses is in place, the natural next step
is to stratify the type system to facilitate reasoning about these more refined
properties of lenses.

A number of other interesting questions are related to static analysis of
lenses. For instance, can we characterize the complexity of programs built
from these combinators? Is there an algebraic theory of lens combinators that
would underpin optimization of lens expressions in the same way that the
relational algebra and its algebraic theory are used to optimize relational
database queries? (e.g., the combinators we have described have the property
that map l1; map l2 = map (l1; l2) for all l1 and l2, but the latter should run sub-
stantially faster.)

11.2 Optimization

This algebraic theory will play a crucial role in any serious effort to compile
lens programs efficiently. Our current prototype performs a straightforward
translation from a concrete syntax similar to the one used in this article to a
combinator library written in OCaml. This is fast enough for experimenting
with lens programming and for small demos (our calendar lenses can process
a few thousands of appointments in under a minute), but we would like to
apply the Harmony system to applications such as synchronization of biological
databases that will require much higher throughput.

11.3 Additional Combinators

Another area for further investigation is the design of additional combinators.
While we have found the ones we have described to be expressive enough to code
a large number of examples—both intricate structural manipulations such as
the list transformations in Section 7 and more prosaic application transforma-
tions such as the ones needed by the bookmark synchronizer in Section 8—
there are some areas where we would like more general forms of the lenses
we have (e.g., a more flexible form of xfork where the splitting and recom-
bining of trees is not based on top-level names but involves deeper structure),
lenses expressing more global transformations on trees (including analogs of
database operations such as join) or lenses addressing completely different
sorts of transformations (e.g., none of our combinators do any significant pro-
cessing on edge labels, which might include string processing, arithmetic, etc.).
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Higher-level combinators embodying more global transformations on trees per-
haps modeled on a familiar tree transformation notation such as XSLT are
another interesting possibility.

Finally, we would also like to investigate recursion combinators that are less
powerful than fix, but that come equipped with simpler principles for reasoning
about totality. We already have one such combinator: map iterates over the width
of the tree. However, we think it should be possible to go further; for example,
one could define lenses by structural recursion on trees.

11.4 Expressiveness

More generally, what are the limits of bidirectional programming? How expres-
sive are the combinators we have defined here? Do they cover any known or
succinctly characterizable classes of computations (in the sense that the set
of get parts of the total lenses built from these combinators coincide with this
class)? We have put considerable energy into these questions, but at the mo-
ment we can only report that they are challenging! One reason for this is that
questions about expressiveness tend to have trivial answers when phrased se-
mantically. For example, it is not hard to show that any surjective get function
can be equipped with a putback function—indeed, typically many—to form a
total lens. If the concrete domain C is recursively enumerable, then this put-
back function is even computable. The real problems are thus syntactic; how to
conveniently pick out a putback function that does what is wanted for a given
situation.

Recently, we have been exploring bidirectional transformations expressed as
word and tree transducers.

11.5 Lens Inference

In restricted cases, it may be possible to build lenses in simpler ways than
by explicit programming, for instance, by generating them automatically from
schemas for concrete and abstract views or by inference from a set of pairs of
inputs and desired outputs (programming by example). Such a facility might be
used to do part of the work for a programmer wanting to add synchronization
support for a new application (where the abstract schema is already known,
e.g.), leaving just a few spots to fill in.
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