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Abstract
Despite the advances made by modern parsing strategies
such as PEG, LL(*), GLR, and GLL, parsing is not a solved
problem. Existing approaches suffer from a number of weak-
nesses, including difficulties supporting side-effecting em-
bedded actions, slow and/or unpredictable performance, and
counter-intuitive matching strategies. This paper introduces
the ALL(*) parsing strategy that combines the simplicity, ef-
ficiency, and predictability of conventional top-down LL(k)
parsers with the power of a GLR-like mechanism to make
parsing decisions. The critical innovation is to move gram-
mar analysis to parse-time, which lets ALL(*) handle any
non-left-recursive context-free grammar. ALL(*) is O(n4)
in theory but consistently performs linearly on grammars
used in practice, outperforming general strategies such as
GLL and GLR by orders of magnitude. ANTLR 4 generates
ALL(*) parsers and supports direct left-recursion through
grammar rewriting. Widespread ANTLR 4 use (5000 down-
loads/month in 2013) provides evidence that ALL(*) is ef-
fective for a wide variety of applications.

Categories and Subject Descriptors F.4.2 Grammars and
Other Rewriting Systems [Parsing]; D.3.1 Formal Lan-
guages [syntax]

General Terms Algorithms, Languages, Theory

Keywords nondeterministic parsing, DFA, augmented tran-
sition networks, grammar, ALL(*), LL(*), GLR, GLL, PEG

1. Introduction
Computer language parsing is still not a solved problem in
practice, despite the sophistication of modern parsing strate-
gies and long history of academic study. When machine re-
sources were scarce, it made sense to force programmers to
contort their grammars to fit the constraints of determin-
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istic LALR(k) or LL(k) parser generators.1 As machine
resources grew, researchers developed more powerful, but
more costly, nondeterministic parsing strategies following
both “bottom-up” (LR-style) and “top-down” (LL-style) ap-
proaches. Strategies include GLR [26], Parser Expression
Grammar (PEG) [9], LL(*) [20] from ANTLR 3, and re-
cently, GLL [25], a fully general top-down strategy.

Although these newer strategies are much easier to use
than LALR(k) and LL(k) parser generators, they suffer
from a variety of weaknesses. First, nondeterministic parsers
sometimes have unanticipated behavior. GLL and GLR re-
turn multiple parse trees (forests) for ambiguous grammars
because they were designed to handle natural language
grammars, which are typically ambiguous. For computer
languages, ambiguity is almost always an error. One can
certainly walk a parse forest to disambiguate it, but that
approach costs extra time, space, and machinery for the un-
common case. PEGs are unambiguous by definition but have
a quirk where ruleA→ a | ab (meaning “Amatches either a
or ab”) can never match ab since PEGs choose the first alter-
native that matches a prefix of the remaining input. Nested
backtracking makes debugging PEGs difficult.

Second, side-effecting programmer-supplied actions (mu-
tators) like print statements should be avoided in any strat-
egy that continuously speculates (PEG) or supports multiple
interpretations of the input (GLL and GLR) because such ac-
tions may never really take place [17]. (Though DParser [24]
supports “final” actions when the programmer is certain a re-
duction is part of an unambiguous final parse.) Without side
effects, actions must buffer data for all interpretations in im-
mutable data structures or provide undo actions. The former
mechanism is limited by memory size and the latter is not
always easy or possible. The typical approach to avoiding
mutators is to construct a parse tree for post-parse process-
ing, but such artifacts fundamentally limit parsing to input
files whose trees fit in memory. Parsers that build parse trees
cannot analyze large files or infinite streams, such as net-
work traffic, unless they can be processed in logical chunks.

Third, our experiments (Section 7) show that GLL and
GLR can be slow and unpredictable in time and space. Their

1 We use the term deterministic in the way that deterministic finite automata
(DFA) differ from nondeterministic finite automata (NFA): The next sym-
bol(s) uniquely determine action.
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complexities are, respectively, O(n3) and O(np+1) where p
is the length of the longest production in the grammar [14].
(GLR is typically quoted as O(n3) as Kipps [15] gave such
an algorithm, albeit with a constant so high as to be imprac-
tical.) In theory, general parsers should handle deterministic
grammars in near-linear time. In practice, we found GLL and
GLR to be ˜135x slower than ALL(*) on a corpus of 12,920
Java 6 library source files (123M) and 6 orders of magnitude
slower on a single 3.2M Java file, respectively.

LL(*) addresses these weaknesses by providing a mostly
deterministic parsing strategy that uses regular expressions,
represented as deterministic finite automata (DFA), to po-
tentially examine the entire remaining input rather than the
fixed k-sequences of LL(k). Using DFA for lookahead lim-
its LL(*) decisions to distinguishing alternatives with regular
lookahead languages, even though lookahead languages (set
of all possible remaining input phrases) are often context-
free. But the main problem is that the LL(*) grammar con-
dition is statically undecidable and grammar analysis some-
times fails to find regular expressions that distinguish be-
tween alternative productions. ANTLR 3’s static analysis de-
tects and avoids potentially-undecidable situations, failing
over to backtracking parsing decisions instead. This gives
LL(*) the same a | ab quirk as PEGs for such decisions.
Backtracking decisions that choose the first matching alter-
native also cannot detect obvious ambiguities such A →
α |α where α is some sequence of grammar symbols that
makes α |α non-LL(*).

1.1 Dynamic grammar analysis
In this paper, we introduce Adaptive LL(*) , or ALL(*) ,
parsers that combine the simplicity of deterministic top-
down parsers with the power of a GLR-like mechanism to
make parsing de- cisions. Specifically, LL parsing suspends
at each prediction decision point (nonterminal) and then re-
sumes once the prediction mechanism has chosen the ap-
propriate production to expand. The critical innovation is
to move grammar analysis to parse-time; no static gram-
mar analysis is needed. This choice lets us avoid the un-
decidability of static LL(*) grammar analysis and lets us
generate correct parsers (Theorem 6.1) for any non-left-
recursive context-free grammar (CFG). While static analysis
must consider all possible input sequences, dynamic analy-
sis need only consider the finite collection of input sequences
actually seen.

The idea behind the ALL(*) prediction mechanism is to
launch subparsers at a decision point, one per alternative
production. The subparsers operate in pseudo-parallel to ex-
plore all possible paths. Subparsers die off as their paths
fail to match the remaining input. The subparsers advance
through the input in lockstep so analysis can identify a sole
survivor at the minimum lookahead depth that uniquely pre-
dicts a production. If multiple subparsers coalesce together
or reach the end of file, the predictor announces an ambigu-

ity and resolves it in favor of the lowest production number
associated with a surviving subparser. (Productions are num-
bered to express precedence as an automatic means of re-
solving ambiguities like PEGs; Bison also resolves conflicts
by choosing the production specified first.) Programmers can
also embed semantic predicates [22] to choose between am-
biguous interpretations.

ALL(*) parsers memoize analysis results, incrementally
and dynamically building up a cache of DFA that map looka-
head phrases to predicted productions. (We use the term
analysis in the sense that ALL(*) analysis yields lookahead
DFA like static LL(*) analysis.) The parser can make fu-
ture predictions at the same parser decision and lookahead
phrase quickly by consulting the cache. Unfamiliar input
phrases trigger the grammar analysis mechanism, simultane-
ously predicting an alternative and updating the DFA. DFA
are suitable for recording prediction results, despite the fact
that the lookahead language at a given decision typically
forms a context-free language. Dynamic analysis only needs
to consider the finite context-free language subsets encoun-
tered during a parse and any finite set is regular.

To avoid the exponential nature of nondeterministic sub-
parsers, prediction uses a graph-structured stack (GSS) [25]
to avoid redundant computations. GLR uses essentially the
same strategy except that ALL(*) only predicts productions
with such subparsers whereas GLR actually parses with
them. Consequently, GLR must push terminals onto the GSS
but ALL(*) does not.

ALL(*) parsers handle the task of matching terminals and
expanding nonterminals with the simplicity of LL but have
O(n4) theoretical time complexity (Theorem 6.3) because
in the worst-case, the parser must make a prediction at each
input symbol and each prediction must examine the entire re-
maining input; examining an input symbol can cost O(n2).
O(n4) is in line with the complexity of GLR. In Section 7,
we show empirically that ALL(*) parsers for common lan-
guages are efficient and exhibit linear behavior in practice.

The advantages of ALL(*) stem from moving grammar
analysis to parse time, but this choice places an additional
burden on grammar functional testing. As with all dynamic
approaches, programmers must cover as many grammar
position and input sequence combinations as possible to
find grammar ambiguities. Standard source code coverage
tools can help programmers measure grammar coverage for
ALL(*) parsers. High coverage in the generated code corre-
sponds to high grammar coverage.

The ALL(*) algorithm is the foundation of the ANTLR 4
parser generator (ANTLR 3 is based upon LL(*)). ANTLR 4
was released in January 2013 and gets about 5000 download-
s/month (source, binary, or ANTLRworks2 development
environment, counting non-robot entries in web logs with
unique IP addresses to get a lower bound.) Such activity
provides evidence that ALL(*) is useful and usable.
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The remainder of this paper is organized as follows. We
begin by introducing the ANTLR 4 parser generator (Sec-
tion 2) and discussing the ALL(*) parsing strategy (Sec-
tion 3). Next, we define predicated grammars, their aug-
mented transition network representation, and lookahead
DFA (Section 4). Then, we describe ALL(*) grammar anal-
ysis and present the parsing algorithm itself (Section 5).
Finally, we support our claims regarding ALL(*) correctness
(Section 6) and efficiency (Section 7) and examine related
work (Section 8). Appendix A has proofs for key ALL(*)
theorems, Appendix B discusses algorithm pragmatics, Ap-
pendix C has left-recursion elimination details.

2. ANTLR 4
ANTLR 4 accepts as input any context-free grammar that
does not contain indirect or hidden left-recursion.2 From the
grammar, ANTLR 4 generates a recursive-descent parser
that uses an ALL(*) production prediction function (Sec-
tion 3). ANTLR currently generates parsers in Java or C#.
ANTLR 4 grammars use yacc-like syntax with extended
BNF (EBNF) operators such as Kleene star (*) and token
literals in single quotes. Grammars contain both lexical and
syntactic rules in a combined specification for convenience.
ANTLR 4 generates both a lexer and a parser from the com-
bined specification. By using individual characters as input
symbols, ANTLR 4 grammars can be scannerless and com-
posable because ALL(*) languages are closed under union
(Theorem 6.2), providing the benefits of modularity de-
scribed by Grimm [10]. (We will henceforth refer to ANTLR
4 as ANTLR and explicitly mark earlier versions.)

Programmers can embed side-effecting actions (muta-
tors), written in the host language of the parser, in the gram-
mar. The actions have access to the current state of the
parser. The parser ignores mutators during speculation to
prevent actions from “launching missiles” speculatively. Ac-
tions typically extract information from the input stream and
create data structures.

ANTLR also supports semantic predicates, which are
side-effect free Boolean-valued expressions written in the
host language that determine the semantic viability of a par-
ticular production. Semantic predicates that evaluate to false
during the parse render the surrounding production nonvi-
able, dynamically altering the language generated by the
grammar at parse-time.3 Predicates significantly increase the
strength of a parsing strategy because predicates can exam-
ine the parse stack and surrounding input context to pro-
vide an informal context-sensitive parsing capability. Se-
mantic actions and predicates typically work together to al-

2 Indirectly left-recursive rules call themselves through another rule; e.g.,
A→ B, B → A. Hidden left-recursion occurs when an empty production
exposes left recursion; e.g., A→ BA, B → ε.
3 Previous versions of ANTLR supported syntactic predicates to disam-
biguate cases where static grammar analysis failed; this facility is not
needed in ANTLR4 because of ALL(*)’s dynamic analysis.

grammar Ex; // generates class ExParser

// action defines ExParser member: enum_is_keyword

@members {boolean enum_is_keyword = true;}
stat: expr ’=’ expr ’;’ // production 1

| expr ’;’ // production 2

;

expr: expr ’*’ expr

| expr ’+’ expr

| expr ’(’ expr ’)’ // f(x)

| id

;

id : ID | {!enum_is_keyword}? ’enum’ ;

ID : [A-Za-z]+ ; // match id with upper, lowercase

WS : [ \t\r\n]+ -> skip ; // ignore whitespace

Figure 1. Sample left-recursive ANTLR 4 predicated-grammar

ter the parse based upon previously-discovered information.
For example, a C grammar could have embedded actions
to define type symbols from constructs, like typedef int

i32;, and predicates to distinguish type names from other
identifiers in subsequent definitions like i32 x;.

2.1 Sample grammar
Figure 1 illustrates ANTLRs yacc-like metalanguage by giv-
ing the grammar for a simple programming language with
assignment and expression statements terminated by semi-
colons. There are two grammar features that render this
grammar non-LL(*) and, hence, unacceptable to ANTLR 3.
First, rule expr is left recursive. ANTLR 4 automatically
rewrites the rule to be non-left-recursive and unambiguous,
as described in Section 2.2. Second, the alternative produc-
tions of rule stat have a common recursive prefix (expr),
which is sufficient to render stat undecidable from an LL(*)
perspective. ANTLR 3 would detect recursion on production
left edges and fail over to a backtracking decision at runtime.

Predicate {!enum is keyword}? in rule id allows or
disallows enum as a valid identifier according to the predi-
cate at the moment of prediction. When the predicate is false,
the parser treats id as id : ID ; disallowing enum as an id
as the lexer matches enum as a separate token from ID. This
example demonstrates how predicates allow a single gram-
mar to describe subsets or variations of the same language.

2.2 Left-recursion removal
The ALL(*) parsing strategy itself does not support left-
recursion, but ANTLR supports direct left-recursion through
grammar rewriting prior to parser generation. Direct left-
recursion covers the most common cases, such as arithmetic
expression productions, like E → E . id, and C declara-
tors. We made an engineering decision not to support indi-
rect or hidden left-recursion because these forms are much
less common and removing all left recursion can lead to
exponentially-big transformed grammars. For example, the
C11 language specification grammar contains lots of direct
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left-recursion but no indirect or hidden recursion. See Ap-
pendix 2.2 for more details.

2.3 Lexical analysis with ALL(*)
ANTLR uses a variation of ALL(*) for lexing that fully
matches tokens instead of just predicting productions like
ALL(*) parsers do. After warm-up, the lexer will have built a
DFA similar to what regular-expression based tools such as
lex would create statically. The key difference is that ALL(*)
lexers are predicated context-free grammars not just regular
expressions so they can recognize context-free tokens such
as nested comments and can gate tokens in and out according
to semantic context. This design is possible because ALL(*)
is fast enough to handle lexing as well as parsing.

ALL(*) is also suitable for scannerless parsing because of
its recognition power, which comes in handy for context-
sensitive lexical problems like merging C and SQL lan-
guages. Such a union has no clear lexical sentinels demar-
cating lexical regions:

int next = select ID from users where name=’Raj’+1;

int from = 1, select = 2;

int x = select * from;

See grammar extras/CSQL in [19] for a proof of concept.

3. Introduction to ALL(*) parsing
In this section, we explain the ideas and intuitions behind
ALL(*) parsing. Section 5 will then present the algorithm
more formally. The strength of a top-down parsing strategy
is related to how the strategy chooses which alternative pro-
duction to expand for the current nonterminal. Unlike LL(k)
and LL(*) parsers, ALL(*) parsers always choose the first al-
ternative that leads to a valid parse. All non-left-recursive
grammars are therefore ALL(*).

Instead of relying on static grammar analysis, an ALL(*)
parser adapts to the input sentences presented to it at parse-
time. The parser analyzes the current decision point (nonter-
minal with multiple productions) using a GLR-like mecha-
nism to explore all possible decision paths with respect to the
current “call” stack of in-process nonterminals and the re-
maining input on-demand. The parser incrementally and dy-
namically builds a lookahead DFA per decision that records
a mapping from lookahead sequence to predicted produc-
tion number. If the DFA constructed to date matches the cur-
rent lookahead, the parser can skip analysis and immediately
expand the predicted alternative. Experiments in Section 7
show that ALL(*) parsers usually get DFA cache hits and
that DFA are critical to performance.

Because ALL(*) differs from deterministic top-down
methods only in the prediction mechanism, we can con-
struct conventional recursive-descent LL parsers but with
an important twist. ALL(*) parsers call a special predic-
tion function, adaptivePredict, that analyzes the grammar
to construct lookahead DFA instead of simply comparing
the lookahead to a statically-computed token set. Function

void stat() { / / p a r s e a c c o r d i n g t o r u l e s t a t
switch (adaptivePredict("stat", call stack)) {

case 1 : / / p r e d i c t p r o d u c t i o n 1
expr (); match(’=’); expr (); match(’;’);

break;

case 2 : / / p r e d i c t p r o d u c t i o n 2
expr (); match(’;’); break;

}

}

Figure 2. Recursive-descent code for stat in grammar Ex

expr
stat

expr

'=' expr

';'

';'ɛ

ɛ
ɛ

ɛ
p

q

Figure 3. ATN for ANTLR rule stat in grammar Ex

adaptivePredict takes a nonterminal and parser call stack as
parameters and returns the predicted production number or
throws an exception if there is no viable production. For ex-
ample, rule stat from the example in Section 2.1 yields a
parsing procedure similar to Figure 2.

ALL(*) prediction has a structure similar to the well-
known NFA-to-DFA subset construction algorithm. The
goal is to discover the set of states the parser could reach
after having seen some or all of the remaining input rela-
tive to the current decision. As in subset construction, an
ALL(*) DFA state is the set of parser configurations possi-
ble after matching the input leading to that state. Instead of
an NFA, however, ALL(*) simulates the actions of an aug-
mented recursive transition network (ATN) [27] represen-
tation of the grammar since ATNs closely mirror grammar
structure. (ATNs look just like syntax diagrams that can have
actions and semantic predicates.) LL(*)’s static analysis also
operates on an ATN for the same reason. Figure 3 shows the
ATN submachine for rule stat.

An ATN configuration represents the execution state of
a subparser and tracks the ATN state, predicted production
number, and ATN subparser call stack: tuple (p, i, γ).4 Con-
figurations include production numbers so prediction can
identify which production matches the current lookahead.
Unlike static LL(*) analysis, ALL(*) incrementally builds
DFA considering just the lookahead sequences it has seen
instead of all possible sequences.

When parsing reaches a decision for the first time, adap-
tivePredict initializes the lookahead DFA for that decision
by creating a DFA start state, D0. D0 is the set of ATN sub-
parser configurations reachable without consuming an input
symbol starting at each production left edge. For example,
construction of D0 for nonterminal stat in Figure 3 would
first add ATN configurations (p, 1, []) and (q, 2, []) where p
and q are ATN states corresponding to production 1 and 2’s
left edges and [] is the empty subparser call stack (if stat is
the start symbol).

4 Component i does not exist in the machine configurations of GLL, GLR,
or Earley [8].
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1
ID =

:1sD0

ID =

ID )( ;
:1

:2

s1D0

(a) After x=y; (b) After x=y; and f(x);

Figure 4. Prediction DFA for decision stat

Analysis next computes a new DFA state indicating
where ATN simulation could reach after consuming the first
lookahead symbol and then connects the two DFA states
with an edge labeled with that symbol. Analysis contin-
ues, adding new DFA states, until all ATN configurations
in a newly-created DFA state predict the same production:
(−, i,−). Function adaptivePredict marks that state as an
accept state and returns to the parser with that production
number. Figure 4a shows the lookahead DFA for decision
stat after adaptivePredict has analyzed input sentence
x=y;. The DFA does not look beyond = because = is suffi-
cient to uniquely distinguish expr’s productions. (Notation
:1 means “predict production 1.”)

In the typical case, adaptivePredict finds an existing
DFA for a particular decision. The goal is to find or build
a path through the DFA to an accept state. If adaptivePredict
reaches a (non-accept) DFA state without an edge for the
current lookahead symbol, it reverts to ATN simulation to
extend the DFA (without rewinding the input). For example,
to analyze a second input phrase for stat, such as f(x);,
adaptivePredict finds an existing ID edge from the D0 and
jumps to s1 without ATN simulation. There is no existing
edge from s1 for the left parenthesis so analysis simulates
the ATN to complete a path to an accept state, which predicts
the second production, as shown in Figure 4b. Note that be-
cause sequence ID(ID) predicts both productions, analysis
continues until the DFA has edges for the = and ; symbols.

If ATN simulation computes a new target state that al-
ready exists in the DFA, simulation adds a new edge target-
ing the existing state and switches back to DFA simulation
mode starting at that state. Targeting existing states is how
cycles can appear in the DFA. Extending the DFA to han-
dle unfamiliar phrases empirically decreases the likelihood
of future ATN simulation, thereby increasing parsing speed
(Section 7).

3.1 Predictions sensitive to the call stack
Parsers cannot always rely upon lookahead DFA to make
correct decisions. To handle all non-left-recursive grammars,
ALL(*) prediction must occasionally consider the parser call
stack available at the start of prediction (denoted γ0 in Sec-
tion 5). To illustrate the need for stack-sensitive predictions,
consider that predictions made while recognizing a Java
method definition might depend on whether the method was
defined within an interface or class definition. (Java interface
methods cannot have bodies.) Here is a simplified grammar
that exhibits a stack-sensitive decision in nonterminal A:

S → xB | yC B → Aa C → Aba A→ b | ε

Without the parser stack, no amount of lookahead can
uniquely distinguish between A’s productions. Lookahead
ba predicts A → b when B invokes A but predicts A → ε
whenC invokesA. If prediction ignores the parser call stack,
there is a prediction conflict upon ba.

Parsers that ignore the parser call stack for prediction
are called Strong LL (SLL) parsers. The recursive-descent
parsers programmers build by hand are in the SLL class.
By convention, the literature refers to SLL as LL but we
distinguish the terms since “real” LL is needed to handle all
grammars. The above grammar is LL(2) but not SLL(k)
for any k, though duplicating A for each call site renders the
grammar SLL(2).

Creating a different lookahead DFA for each possible
parser call stack is not feasible as the number of stack permu-
tations is exponential in the stack depth. Instead, we take ad-
vantage of the fact that most decisions are not stack-sensitive
and build DFA ignoring the parser call stack. If SLL ATN
simulation finds a prediction conflict (Section 5.3), it can-
not be sure if the lookahead phrase is ambiguous or stack-
sensitive. In this case, adaptivePredict must re-examine the
lookahead using the parser stack γ0. This hybrid or opti-
mized LL mode improves performance by caching stack-
insensitive prediction results in lookahead DFA when pos-
sible while retaining full stack-sensitive prediction power.
Optimized LL mode applies on a per-decision basis, but two-
stage parsing, described next, can often avoid LL simula-
tion completely. (We henceforth use SLL to indicate stack-
insensitive parsing and LL to indicate stack-sensitive.)

3.2 Two-stage ALL(*) parsing
SLL is weaker but faster than LL. Since we have found that
most decisions are SLL in practice, it makes sense to attempt
parsing entire inputs in “SLL only mode,” which is stage one
of the two-stage ALL(*) parsing algorithm. If, however, SLL
mode finds a syntax error, it might have found an SLL weak-
ness or a real syntax error, so we have to retry the entire input
using optimized LL mode, which is stage two. This coun-
terintuitive strategy, which potentially parses entire inputs
twice, can dramatically increase speed over the single-stage
optimized LL mode stage. For example, two-stage parsing
with the Java grammar (Section 7) is 8x faster than one-stage
optimized LL mode to parse a 123M corpus. The two-stage
strategy relies on the fact that SLL either behaves like LL
or gets an error (Theorem 6.5). For invalid sentences, there
is no derivation for the input regardless of how the parser
chooses productions. For valid sentences, SLL chooses pro-
ductions as LL would or picks a production that ultimately
leads to an error (LL finds that choice nonviable). Even in the
presence of ambiguities, SLL often resolves conflicts as LL
would. For example, despite a few ambiguities in our Java
grammar, SLL mode correctly parses all inputs we have tried
without failing over to LL. Nonetheless, the second (LL)
stage must remain to ensure correctness.
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4. Predicated grammars, ATNs, and DFA
To formalize ALL(*) parsing, we first need to recall some
background material, specifically, the formal definitions of
predicate grammars, ATNs, and Lookahead DFA.

4.1 Predicated grammars
To formalize ALL(*) parsing, we first need to formally define
the predicated grammars from which they are derived. A
predicated grammar G = (N,T, P, S,Π,M) has elements:
• N is the set of nonterminals (rule names)
• T is the set of terminals (tokens)
• P is the set of productions
• S ∈ N is the start symbol
• Π is a set of side-effect-free semantic predicates
•M is a set of actions (mutators)

Predicated ALL(*) grammars differ from those of LL(*)
[20] only in that ALL(*) grammars do not need or support
syntactic predicates. Predicated grammars in the formal sec-
tions of this paper use the notation shown in Figure 5. The
derivation rules in Figure 6 define the meaning of a pred-
icated grammar. To support semantic predicates and muta-
tors, the rules reference state S, which abstracts user state
during parsing. The judgment form (S, α)⇒ (S′, β) means:
“In machine state S, grammar sequence α reduces in one
step to modified state S′ and grammar sequence β.” The
judgment (S, α) ⇒∗ (S′, β) denotes repeated applications
of the one-step reduction rule. These reduction rules specify
a leftmost derivation. A production with semantic predicate
πi is viable only if πi is true of current state S. Finally, an
action production uses the specified mutator µi to update S.

Formally, the language generated by grammar sequence
α in user state S is L(S, α) = {w | (S, α) ⇒∗ (S′, w)} and
the language of grammar G is L(S0, G) = {w | (S0, S) ⇒∗
(S, w)} for initial user state S0 (S0 can be empty). If u is a
prefix of w or equal to w, we write u � w. Language L is
ALL(*) iff there exists an ALL(*) grammar for L. Theoreti-
cally, the language class of L(G) is recursively enumerable
because each mutator could be a Turing machine. In reality,
grammar writers do not use this generality so it is standard
practice to consider the language class to be the context-
sensitive languages instead. The class is context-sensitive
rather than context-free as predicates can examine the call
stack and terminals to the left and right.

This formalism has various syntactic restrictions not
present in actual ANTLR grammars, for example, forcing
mutators into their own rules and disallowing the common
Extended BNF (EBNF) notation such as α∗ and α+ closures.
We can make these restrictions without loss of generality be-
cause any grammar in the general form can be translated into
this more restricted form.

4.2 Resolving ambiguity
An ambiguous grammar is one in which the same input
sequence can be recognized in multiple ways. The rules in

A ∈ N Nonterminal
a, b, c, d ∈ T Terminal
X ∈ (N ∪ T ) Production element
α, β, δ ∈ X∗ Sequence of grammar symbols
u, v, w, x, y ∈ T ∗ Sequence of terminals
ε Empty string
$ End of file “symbol”
π ∈ Π Predicate in host language
µ ∈M Action in host language
λ ∈ (N ∪Π ∪M) Reduction label
~λ = λ1..λn Sequence of reduction labels
Production Rules:
A→ αi ith context-free production of A
A→ {πi}? αi ith production predicated on semantics
A→ {µi} ith production with mutator

Figure 5. Predicated Grammar Notation

Prod A→ α
(S, uAδ)⇒ (S, uαδ)

Sem

π(S)
A→ {π}?α

(S, uAδ)⇒ (S, uαδ) Action A→ {µ}
(S, uAδ)⇒ (µ(S), uδ)

Closure (S, α)⇒ (S′, α′), (S′, α′)⇒∗ (S′′, β)
(S, α)⇒∗ (S′′, β)

Figure 6. Predicated Grammar Leftmost Derivation Rules

Figure 6 do not preclude ambiguity. However, for a practical
programing language parser, each input should correspond
to a unique parse. To that end, ALL(*) uses the order of the
productions in a rule to resolve ambiguities in favor of the
production with the lowest number. This strategy is a concise
way for programmers to resolve ambiguities automatically
and resolves the well-known if-then-else ambiguity in the
usual way by associating the else with the most recent if.
PEGs and Bison parsers have the same resolution policy.

To resolve ambiguities that depend on current state S,
programmers can insert semantic predicates but must make
them mutually exclusive for all ambiguous input sequences
to render such productions unambiguous. Statically, mutual
exclusion cannot be enforced because predicates are writ-
ten in a Turing-complete language. At parse-time, however,
ALL(*) evaluates predicates and dynamically reports input
phrases for which multiple, predicated productions are vi-
able. If the programmer fails to satisfy mutual exclusivity,
ALL(*) uses production order to resolve the ambiguity.

4.3 Augmented transition networks
Given predicated grammar G=(N,T, P, S,Π,M), the cor-
responding ATN MG = (Q,Σ,∆, E, F ) has elements [20]:

• Q is the set of states
• Σ is the edge alphabet N ∪ T ∪Π ∪M
• ∆ is the transition relation mapping Q× (Σ ∪ ε)→ Q
• E ∈ Q={pA | A ∈ N} is set of submachine entry states
• F ∈ Q = {p′A | A ∈ N} is set of submachine final states
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Input Grammar Element Resulting ATN Transitions
A→ αi pA

ε−→ pA,i
ε−→ αi

ε−→ p′A

A→ {πi}?αi pA
ε−→ pA,i

πi−→ αi
ε−→ p′A

A→ {µi} pA
ε−→ pA,i

µi−→ p′A
A→ εi pA

ε−→ pA,i
ε−→ p′A

αi = X1X2 . . . Xm
for Xj ∈ N ∪ T, j = 1..m

p0
X1−−→ p1

X2−−→ . . .
Xm−−→ pm

Figure 7. Predicated Grammar to ATN transformation
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Figure 8. ATN for G with P={S → Ac |Ad, A→ aA | b}

ATNs resemble the syntax diagrams used to document
programming languages, with an ATN submachine for each
nonterminal. Figure 7 shows how to construct the set of
states Q and edges ∆ from grammar productions. The start
state for A is pA ∈ Q and targets pA,i, created from the left
edge of αi, with an edge in ∆. The last state created from
αi targets p′A. Nonterminal edges p A−→ q are like function
calls. They transfer control of the ATN to A’s submachine,
pushing return state q onto a state call stack so it can continue
from q after reaching the stop state for A’s submachine, p′A.
Figure 8 gives the ATN for a simple grammar. The language
matched by the ATN is the same as the language of the
original grammar.

4.4 Lookahead DFA
ALL(*) parsers record prediction results obtained from ATN
simulation with lookahead DFA, which are DFA augmented
with accept states that yield predicted production numbers.
There is one accept state per production of a decision.

Definition 4.1. Lookahead DFA are DFA with augmented
accept states that yield predicted production numbers. For
predicated grammar G = (N,T, P, S,Π,M), DFA M =
(Q,Σ,∆, D0, F ) where:

• Q is the set of states
• Σ = T is the edge alphabet
• ∆ is the transition function mapping Q× Σ→ Q
• D0 ∈ Q is the start state
• F ∈ Q = {f1, f2, . . . , fn} final states, one fi per prod. i

A transition in ∆ from state p to state q on symbol a ∈ Σ
has the form p

a→ q and we require p a−→ q′ implies q = q′.

5. ALL(*) parsing algorithm
With the definitions of grammars, ATNs, and lookahead
DFA formalized, we can present the key functions of the
ALL(*) parsing algorithm. This section starts with a sum-
mary of the functions and how they fit together then dis-

cusses a critical graph data structure before presenting the
functions themselves. We finish with an example of how the
algorithm works.

Parsing begins with function parse that behaves like
a conventional top-down LL(k) parse function except that
ALL(*) parsers predict productions with a special function
called adaptivePredict, instead of the usual “switch on next
k token types” mechanism. Function adaptivePredict simu-
lates an ATN representation of the original predicated gram-
mar to choose an αi production to expand for decision point
A → α1 | ... |αn. Conceptually, prediction is a function of
the current parser call stack γ0, remaining input wr, and
user state S if A has predicates. For efficiency, prediction ig-
nores γ0 when possible (Section 3.1) and uses the minimum
lookahead from wr.

To avoid repeating ATN simulations for the same input
and nonterminal, adaptivePredict assembles DFA that mem-
oize input-to-predicted-production mappings, one DFA per
nonterminal. Recall that each DFA state, D, is the set of
ATN configurations possible after matching the lookahead
symbols leading to that state. Function adaptivePredict calls
startState to create initial DFA state, D0, and then SLLpre-
dict to begin simulation.

Function SLLpredict adds paths to the lookahead DFA
that match some or all of wr through repeated calls to target.
Function target computes DFA target state D′ from current
state D using move and closure operations similar to those
found in subset construction. Function move finds all ATN
configurations reachable on the current input symbol and
closure finds all configurations reachable without traversing
a terminal edge. The primary difference from subset con-
struction is that closure simulates the call and return of ATN
submachines associated with nonterminals.

If SLL simulation finds a conflict (Section 5.3), SLLpre-
dict rewinds the input and calls LLpredict to retry prediction,
this time considering γ0. Function LLpredict is similar to
SLLpredict but does not update a nonterminal’s DFA because
DFA must be stack-insensitive to be applicable in all stack
contexts. Conflicts within ATN configuration sets discovered
by LLpredict represent ambiguities. Both prediction func-
tions use getConflictSetsPerLoc to detect conflicts, which are
configurations representing the same parser location but dif-
ferent productions. To avoid failing over to LLpredict un-
necessarily, SLLpredict uses getProdSetsPerState to see if a
potentially non-conflicting DFA path remains when getCon-
flictSetsPerLoc reports a conflict. If so, it is worth continuing
with SLLpredict on the chance that more lookahead will re-
solve the conflict without recourse to full LL parsing.

Before describing these functions in detail, we review a
fundamental graph data structure that they use to efficiently
manage multiple call stacks a la GLL and GLR.

5.1 Graph-structured call stacks
The simplest way to implement ALL(*) prediction would be
a classic backtracking approach, launching a subparser for

585



each αi. The subparsers would consume all remaining input
because backtracking subparsers do not know when to stop
parsing—they are unaware of other subparsers’ status. The
independent subparsers would also lead to exponential time
complexity. We address both issues by having the prediction
subparsers advance in lockstep through wr. Prediction ter-
minates after consuming prefix u � wr when all subparsers
but one die off or when prediction identifies a conflict. Oper-
ating in lockstep also provides an opportunity for subparsers
to share call stacks thus avoiding redundant computations.

Two subparsers at ATN state p that share the same ATN
stack top, qγ1 and qγ2, will mirror each other’s behavior un-
til simulation pops q from their stacks. Prediction can treat
those subparsers as a single subparser by merging stacks.
We merge stacks for all configurations in a DFA state of the
form (p, i, γ1) and (p, i, γ2), forming a general configuration
(p, i,Γ) with graph-structured stack (GSS) [25] Γ = γ1]γ2

where ] means graph merge. Γ can be the empty stack [], a
special stack # used for SLL prediction (addressed shortly),
an individual stack, or a graph of stack nodes. Merging in-
dividual stacks into a GSS reduces the potential size from
exponential to linear complexity (Theorem 6.4). To repre-
sent a GSS, we use an immutable graph data structure with
maximal sharing of nodes. Here are two examples that share
the parser stack γ0 at the bottom of the stack:

pγ0 ] qγ0 =
γ0

p q
qΓγ0 ] qΓ′γ0 =

γ0

Γ Γ′

q

In the functions that follow, all additions to configuration
sets, such as with operator +=, implicitly merge stacks.

There is a special case related to the stack condition at
the start of prediction. Γ must distinguish between an empty
stack and no stack information. For LL prediction, the initial
ATN simulation stack is the current parser call stack γ0. The
initial stack is only empty, γ0 = [], when the decision entry
rule is the start symbol. Stack-insensitive SLL prediction, on
the other hand, ignores the parser call stack and uses an ini-
tial stack of #, indicating no stack information. This distinc-
tion is important when computing the closure (Function 7) of
configurations representing submachine stop states. Without
parser stack information, a subparser that returns from deci-
sion entry rule A must consider all possible invocation sites;
i.e., closure sees configuration (p′A,−,#).

The empty stack [] is treated like any other node for LL
prediction: Γ ] [] yields the graph equivalent of set {Γ, []},
meaning that both Γ and the empty stack are possible. Push-
ing state p onto [] yields p[] not p because popping p must
leave the [] empty stack symbol. For SLL prediction, Γ]# =
# for any graph Γ because # acts like a wildcard and rep-
resents the set of all stacks. The wildcard therefore contains
any Γ. Pushing state p onto # yields p#.

5.2 ALL(*) parsing functions
We can now present the key ALL(*) functions, which we
have highlighted in boxes and interspersed within the text
of this section. Our discussion follows a top-down order
and assumes that the ATN corresponding to grammar G, the
semantic state S, the DFA under construction, and input are
in scope for all functions of the algorithm and that semantic
predicates and actions can directly access S.

Function parse. The main entry point is function parse
(shown in Function 1), which initiates parsing at the start
symbol, argument S. The function begins by initializing a
simulation call stack γ to an empty stack and setting ATN
state “cursor” p to pS,i, the ATN state on the left edge of
S’s production number i predicted by adaptivePredict. The
function loops until the cursor reaches p′S , the submachine
stop state for S. If the cursor reaches another submachine
stop state, p′B , parse simulates a “return” by popping the
return state q off the call stack and moving p to q.

Function 1: parse(S)
γ := []; i := adaptivePredict(S, γ); p := pS,i;
while true do

if p = p′B (i.e., p is a rule stop state) then
if B = S (finished matching start rule S) then
return;
else let γ = qγ′ in γ := γ′; p := q;

else
switch t where p t−→ q do

case b: (i.e., terminal symbol transition)
if b = input.curr() then
p := q; input.advance();

else parse error;
case B: γ := qγ; i := adaptivePredict(B, γ);
p:=pB,i;
case µ: S := µ(S); p := q;
case π: if π(S) then p := q else parse error;
case ε: p := q;

endsw

For p not at a stop state, parse processes ATN transition
p

t−→ q. There can be only one transition from p because of
the way ATNs are constructed. If t is a terminal edge and
matches the current input symbol, parse transitions the edge
and moves to the next symbol. If t is a nonterminal edge
referencing some B, parse simulates a submachine call by
pushing return state q onto the stack and choosing the appro-
priate production left edge in B by calling adaptivePredict
and setting the cursor appropriately. For action edges, parse
updates the state according to the mutator µ and transitions
to q. For predicate edges, parse transitions only if predicate
π evaluates to true. During the parse, failed predicates be-
have like mismatched tokens. Upon an ε edge, parse moves
to q. Function parse does not explicitly check that parsing
stops at end-of-file because applications like development
environments need to parse input subphrases.
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Function adaptivePredict. To predict a production, parse
calls adaptivePredict (Function 2), which is a function of
the decision nonterminal A and the current parser stack
γ0. Because prediction only evaluates predicates during full
LL simulation, adaptivePredict delegates to LLpredict if at
least one of the productions is predicated.5 For decisions
that do not yet have a DFA, adaptivePredict creates DFA
dfaA with start stateD0 in preparation for SLLpredict to add
DFA paths. D0 is the set of ATN configurations reachable
without traversing a terminal edge. Function adaptivePre-
dict also constructs the set of final states FDFA, which con-
tains one final state fi for each production of A. The set of
DFA states, QDFA, is the union of D0, FDFA, and the er-
ror state Derror. Vocabulary ΣDFA is the set of grammar
terminals T . For unpredicated decisions with existing DFA,
adaptivePredict calls SLLpredict to obtain a prediction from
the DFA, possibly extending the DFA through ATN simula-
tion in the process. Finally, since adaptivePredict is looking
ahead not parsing, it must undo any changes made to the
input cursor, which it does by capturing the input index as
start upon entry and rewinding to start before returning.

Function 2: adaptivePredict(A, γ0) returns int alt
start := input.index(); // checkpoint input
if ∃A→ πiαi then
alt := LLpredict(A, start, γ0);
input.seek(start); // undo stream position changes
return alt;

if @ dfaA then
D0 := startState(A, #);
FDFA := {fi | fi := DFA State(i)∀A→ αi};
QDFA := D0 ∪ FDFA ∪Derror;
dfaA:= DFA(QDFA,ΣDFA = T,∆DFA = ∅, D0, FDFA);

alt := SLLpredict(A, D0, start, γ0);
input.seek(start); // undo stream position changes
return alt;

Function startState. To create DFA start state D0, start-
State (Function 3) adds configurations (pA,i, i, γ) for each
A→αi and A→ πi αi, if πi evaluates to true. When called
from adaptivePredict, call stack argument γ is special sym-
bol # needed by SLL prediction, indicating “no parser stack
information.” When called from LLpredict, γ is parser stack
γ0. Computing closure of the configurations completes D0.

Function SLLpredict. Function SLLpredict (Function 4)
performs both DFA and SLL ATN simulation, incrementally
adding paths to the DFA. In the best case, there is already
a DFA path from D0 to an accept state, fi, for prefix u �
wr and some production number i. In the worst-case, ATN
simulation is required for all a in sequence u. The main loop

5 SLL prediction does not incorporate predicates for clarity in this exposi-
tion, but in practice, ANTLR incorporates predicates into DFA accept states
(Section B.2). ANTLR 3 DFA used predicated edges not predicated accept
states.

Function 3: startState(A, γ) returns DFA State D0

D0 := ∅;
foreach pA

ε−→ pA,i ∈ ∆ATN do
if pA

ε−→ pA,i
πi−→ p then π := πi else π := ε;

if π=ε or eval(πi) then
D0+=closure({},D0,(pA,i,i,γ));

return D0;

in SLLpredict finds an existing edge emanating from DFA
state cursor D upon a or computes a new one via target.
It is possible that target will compute a target state that
already exists in the DFA, D′, in which case function target
returns D′ because D′ may already have outgoing edges
computed; it is inefficient to discard work by replacing D′.
At the next iteration, SLLpredict will consider edges from
D′, effectively switching back to DFA simulation.

Function 4: SLLpredict(A, D0, start, γ0) returns int prod
a := input.curr(); D = D0;
while true do

let D′ be DFA target D a−→ D′;
if @D′ then D′ := target(D, a);
if D′ = Derror then parse error;
if D′ stack sensitive then
input.seek(start); return LLpredict(A, start, γ0);

if D′ = fi ∈ FDFA then return i;
D := D′; a := input.next();

Once SLLpredict acquires a target state, D′, it checks for
errors, stack sensitivity, and completion. If target marked
D′ is stack-sensitive, prediction requires full LL simulation
and SLLpredict calls LLpredict. If D′ is accept state fi, as
determined by target, SLLpredict returns i. In this case, all
the configurations in D′ predicted the same production i;
further analysis is unnecessary and the algorithm can stop.
For any other D′, the algorithm sets D to D′, gets the next
symbol, and repeats.

Function target. Using a combined move-closure opera-
tion, target discovers the set of ATN configurations reach-
able from D upon a single terminal symbol a ∈ T . Function
move computes the configurations reachable directly upon a
by traversing a terminal edge:

move(D, a) = {(q, i,Γ) | p a−→ q, (p, i,Γ) ∈ D}

Those configurations and their closure form D′. If D′ is
empty, no alternative is viable because none can match a
from the current state so target returns error state Derror. If
all configurations in D′ predict the same production number
i, target adds edge D a−→ fi and returns accept state fi. If
D′ has conflicting configurations, target marks D′ as stack-
sensitive. The conflict could be an ambiguity or a weakness
stemming from SLL’s lack of parser stack information. (Con-
flicts along with getConflictSetsPerLoc and getProdSetsPer-
State are described in Section 5.3.) The function finishes by
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adding state D′, if an equivalent state, D′, is not already in
the DFA, and adding edge D a−→ D′.

Function 5: target(D, a) returns DFA State D′

mv := move(D, a);
D′ :=

⋃
c∈mv

closure({}, c);

if D′ = ∅ then ∆DFA += D a−→ Derror; return Derror;
if {j | (−, j,−) ∈ D′} = {i} then

∆DFA += D a−→ fi; return fi; // Predict rule i
// Look for a conflict among configurations of D′

a conflict :=
∃alts ∈getConflictSetsPerLoc(D′) : |alts|>1;
viablealt := ∃alts ∈ getProdSetsPerState(D′) : |alts| = 1;
if a conflict and not viablealt then

mark D′ as stack sensitive;
if D′ = D′ ∈ QDFA then D′ := D′; else QDFA += D′;
∆DFA += D a−→ D′;
return D′;

Function LLpredict. Upon SLL simulation conflict, SLL-
predict rewinds the input and calls LLpredict (Function 6) to
get a prediction based upon LL ATN simulation, which con-
siders the full parser stack γ0. Function LLpredict is similar
to SLLpredict. It uses DFA state D as a cursor and state D′

as the transition target for consistency but does not update
A’s DFA so SLL prediction can continue to use the DFA.
LL prediction continues until either D′ = ∅, D′ uniquely
predicts an alternative, or D′ has a conflict. If D′ from LL
simulation has a conflict as SLL did, the algorithm reports
the ambiguous phrase (input from start to the current index)
and resolves to the minimum production number among the
conflicting configurations. (Section 5.3 explains ambiguity
detection.) Otherwise, cursor D moves to D′ and considers
the next input symbol.

Function 6: LLpredict(A, start, γ0) returns int alt
D := D0 := startState(A, γ0);
while true do

mv := move(D, input.curr());
D′ :=

⋃
c∈mv

closure({}, c);

if D′ = ∅ then parse error;
if {j | (−, j,−) ∈ D′} = {i} then return i;
/* If all p,Γ pairs predict > 1 alt and all such

production sets are same, input ambiguous. */
altsets := getConflictSetsPerLoc(D′);
if ∀x, y ∈ altsets, x = y and |x| > 1 then

x := any set in altsets;
report ambiguous alts x at start..input.index();
return min(x);

D := D′; input.advance();

Function closure. The closure operation (Function 7)
chases through all ε edges reachable from p, the ATN state
projected from configuration parameter c and also simulates

the call and return of submachines. Function closure treats µ
and π edges as ε edges because mutators should not be ex-
ecuted during prediction and predicates are only evaluated
during start state computation. From parameter c = (p, i,Γ)

and edge p ε−→ q, closure adds (q, i,Γ) to local working set
C. For submachine call edge p B−→ q, closure adds the clo-
sure of (pB , i, qΓ). Returning from a submachine stop state
p′B adds the closure of configuration (q, i,Γ) in which case
c would have been of the form (p′B , i, qΓ). In general, a con-
figuration stack Γ is a graph representing multiple individual
stacks. Function closure must simulate a return from each of
the Γ stack tops. The algorithm uses notation qΓ′ ∈ Γ to
represent all stack tops q of Γ. To avoid non-termination due
to SLL right recursion and ε edges in subrules such as ()+,
closure uses a busy set shared among all closure operations
used to compute the same D′.

When closure reaches stop state p′A for decision entry
rule, A, LL and SLL predictions behave differently. LL pre-
diction pops from the parser call stack γ0 and “returns” to
the state that invoked A’s submachine. SLL prediction, on
the other hand, has no access to the parser call stack and
must consider all possible A invocation sites. Function clo-
sure finds Γ = # (and p′B = p′A) in this situation because
startState will have set the initial stack as # not γ0. The re-
turn behavior at the decision entry rule is what differentiates
SLL from LL parsing.

Function 7: closure(busy, c = (p, i,Γ)) returns set C
if c ∈ busy then return ∅; else busy += c;
C := {c};
if p = p′B (i.e., p is any stop state including p′A) then

if Γ = # (i.e., stack is SLL wildcard) then
C +=

⋃
∀ p2 : p1

B−→p2∈∆ATN

closure(busy, (p2, i,#)); // call site

closure
else // nonempty SLL or LL stack

for qΓ′ ∈ Γ (i.e., each stack top q in graph Γ) do
C += closure(busy, (q, i,Γ′)); // “return” to q

return C;
end
foreach p edge−−−→ q do

switch edge do
case B: C += closure(busy, (pB , i, qΓ));
case π, µ, ε: C += closure(busy, (q, i,Γ));

return C;

5.3 Conflict and ambiguity detection
The notion of conflicting configurations is central to ALL(*)
analysis. Conflicts trigger failover to full LL prediction dur-
ing SLL prediction and signal an ambiguity during LL pre-
diction. A sufficient condition for a conflict between con-
figurations is when they differ only in the predicted alter-
native: (p, i,Γ) and (p, j,Γ). Detecting conflicts is aided by
two functions. The first, getConflictSetsPerLoc (Function 8),
collects the sets of production numbers associated with all
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(p,−,Γ) configurations. If a p,Γ pair predicts more than a
single production, a conflict exists. Here is a sample config-
uration set and the associated set of conflict sets:
{(p, 1,Γ), (p, 2,Γ), (p, 3,Γ)︸ ︷︷ ︸

{1,2,3}

, (p, 1,Γ′), (p, 2,Γ′)︸ ︷︷ ︸
{1,2}

, (r, 2,Γ′′)︸ ︷︷ ︸
{2}

}

These conflict sets indicate that location p,Γ is reachable
from productions {1, 2, 3}, p,Γ′ is reachable from produc-
tions {1, 2}, and r,Γ′′ is reachable from production {2}.

// For each p,Γ get set of alts {i} from (p,−,Γ) ∈ D
configs
Function 8: getConflictSetsPerLoc(D) returns set of sets
s := ∅;
for (p,−,Γ) ∈ D do prds:={i | (p, i,Γ)}; s := s ∪ prds;
return s;

The second function, getProdSetsPerState (Function 9),
is similar but collects the production numbers associated
with just ATN state p. For the same configuration set, get-
ProdSetsPerState computes these conflict sets:
{(p, 1,Γ), (p, 2,Γ), (p, 3,Γ), (p, 1,Γ′), (p, 2,Γ′)︸ ︷︷ ︸

{1,2,3}

, (r, 2,Γ′′)︸ ︷︷ ︸
{2}

}

A sufficient condition for failing over to LL prediction
(LLpredict) from SLL would be when there is at least one
set of conflicting configurations: getConflictSetsPerLoc re-
turns at least one set with more than a single production
number. E.g., configurations (p, i,Γ) and (p, j,Γ) exist in
parameter D. However, our goal is to continue using SLL
prediction as long as possible because SLL prediction up-
dates the lookahead DFA cache. To that end, SLL predic-
tion continues if there is at least one nonconflicting config-
uration (when getProdSetsPerState returns at least one set
of size 1). The hope is that more lookahead will lead to a
configuration set that predicts a unique production via that
nonconflicting configuration. For example, the decision for
S → a|a|a q

p b is ambiguous upon a between productions 1
and 2 but is unambiguous upon ab. (Location q

p is the ATN
state between a and b.) After matching input a, the config-
uration set would be {(p′S , 1, []), (p′S , 2, []), (p, 3, [])}. Func-
tion getConflictSetsPerLoc returns {{1, 2}, {3}}. The next
move-closure upon b leads to nonconflicting configuration
set {(p′S , 3, [])} from (p, 3, []), bypassing the conflict. If all
sets returned from getConflictSetsPerLoc predict more than
one alternative, no amount of lookahead will lead to a unique
prediction. Analysis must try again with call stack γ0 via LL-
predict.

// For each p return set of alts i from (p,−,−) ∈ D
configs.
Function 9: getProdSetsPerState(D) returns set of sets
s := ∅;
for (p,−,−) ∈ D do prds := {i | (p, i,−)}; s := s ∪ prds;
return s;

Conflicts during LL simulation are ambiguities and oc-
cur when each conflict set from getConflictSetsPerLoc con-
tains more than 1 production—every location in D is reach-
able from more than a 1 production. Once multiple sub-
parsers reach the same (p,−,Γ), all future simulation de-
rived from (p,−,Γ) will behave identically. More lookahead
will not resolve the ambiguity. Prediction could terminate at
this point and report lookahead prefix u as ambiguous but
LLpredict continues until it is sure for which productions
u is ambiguous. Consider conflict sets {1,2,3} and {2,3}.
Because both have degree greater than one, the sets repre-
sent an ambiguity, but additional input will identify whether
u � wr is ambiguous upon {1,2,3} or {2,3}. Function LL-
predict continues until all conflict sets that identify ambigu-
ities are equal; condition x = y and |x| > 1 ∀x, y ∈ altsets
embodies this test.

To detect conflicts, the algorithm compares graph-structured
stacks frequently. Technically, a conflict occurs when config-
urations (p, i,Γ) and (p, j,Γ′) occur in the same configura-
tion set with i 6= j and at least one stack trace γ in common
to both Γ and Γ′. Because checking for graph intersection is
expensive, the algorithm uses equality, Γ = Γ′, as a heuris-
tic. Equality is much faster because of the shared subgraphs.
The graph equality algorithm can often check node iden-
tity to compare two entire subgraphs. In the worst case, the
equality versus subset heuristic delays conflict detection un-
til the GSS between conflicting configurations are simple
linear stacks where graph intersection is the same as graph
equality. The cost of this heuristic is deeper lookahead.

5.4 Sample DFA construction
To illustrate algorithm behavior, consider inputs bc and
bd for the grammar and ATN in Figure 8. ATN simula-
tion for decision S launches subparsers at left edge nodes
pS,1 and pS,2 with initial D0 configurations (pS,1, 1, []) and
(pS,2, 2, []). Function closure adds three more configurations
to D0 as it “calls” A with “return” nodes p1 and p3. Here is
the DFA resulting from ATN simulation upon bc and then bd
(configurations added by move are bold):

(pS,1,1, []), (pA, 1, p1), (pA,1, 1, p1), (pA,2, 1, p1)
(pS,2,2, []), (pA, 2, p3), (pA,1, 2, p3), (pA,2, 2, p3)

D0

(p7,1,p1), (p′A, 1, p1), (p1, 1, [])
(p7,2,p3), (p′A, 2, p3), (p3, 2, [])

D′

(p2,1, []), (p
′
S , 1, [])f1 (p4,2, []), (p

′
S , 2, []) f2

b

c d

After bc prediction, the DFA has statesD0,D′, and f1. From
DFA state D′, closure reaches the end of A and pops from
the Γ stacks, returning to ATN states in S. State f1 uniquely
predicts production number 1. State f2 is created and con-
nected to the DFA (shown with dashed arrow) during pre-
diction of the second phrase, bd. Function adaptivePredict
first uses DFA simulation to get to D′ from D0 upon b. Be-

589



fore having seen bd, D′ has no d edge so adaptivePredict
must use ATN simulation to add edge D′ d−→ f2.

6. Theoretical results
This section identifies the key ALL(*) theorems and shows
parser time complexity. See Appendix A for detailed proofs.

Theorem 6.1. (Correctness). The ALL(*) parser for non-
left-recursive G recognizes sentence w iff w ∈ L(G).

Theorem 6.2. ALL(*) languages are closed under union.

Theorem 6.3. ALL(*) parsing n symbols has O(n4) time.

Theorem 6.4. A GSS has O(n) nodes for n input symbols.

Theorem 6.5. Two-stage parsing for non-left-recursive G
recognizes sentence w iff w ∈ L(G).

7. Empirical results
We performed experiments to compare the performance of
ALL(*) Java parsers with other strategies, to examine ALL(*)
throughput for a variety of other languages, to highlight the
effect of the lookahead DFA cache on parsing speed, and to
provide evidence of linear ALL(*) performance in practice.

7.1 Comparing ALL(*)’s speed to other parsers
Our first experiment compared Java parsing speed across 10
tools and 8 parsing strategies: hand-tuned recursive-descent
with precedence parsing, LL(k), LL(*), PEG, LALR(1),
ALL(*) GLR, and GLL. Figure 9 shows the time for each
tool to parse the 12,920 source files of the Java 6 library and
compiler. We chose Java because it was the most commonly
available grammar among tools and sample Java source is
plentiful. The Java grammars used in this experiment came
directly from the associated tool except for DParser and
Elkhound, which did not offer suitable Java grammars. We
ported ANTLR’s Java grammar to the meta-syntax of those
tools using unambiguous arithmetic expressions rules. We
also embedded merge actions in the Elkhound grammar to
disambiguate during the parse to mimic ANTLR’s ambigu-
ity resolution. All input files were loaded into RAM before
parsing and times reflect the average time measured over 10
complete corpus passes, skipping the first two to ensure JIT
compiler warm-up. For ALL(*), we used the two-stage parse
from Section 3.2. The test machine was a 6 core 3.33Ghz
16G RAM Mac OS X 10.7 desktop running the Java 7 virtual
machine. Elkhound and DParser parsers were implemented
in C/C++, which does not have a garbage collector running
concurrently. Elkhound was last updated in 2005 and no
longer builds on Linux or OS X, but we were able to build it
on Windows 7 (4 core 2.67Ghz 24G RAM). Elkhound also
can only read from a file so Elkhound parse times are not
comparable. In an effort to control for machine speed dif-
ferences and RAM vs SSD, we computed the time ratio of
our Java test rig on our OS X machine reading from RAM
to the test rig running on Windows pulling from SSD. Our
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Figure 9. Comparing Java parse times for 10 tools and 8
strategies on Java 6 Library and compiler source code (smaller
is faster). 12,920 files, 3.6M lines, size 123M. Tool descriptors
comprise: “tool name version [strategy].” ANTLR4 4.1 [ALL(*)];
Javac 7 [handbuilt recursive-descent and precedence parser for ex-
pressions]; JavaCC 5.0 [LL(k)]; Elkhound 2005.08.22b [GLR]
(tested on Windows); ANTLR3 3.5 [LL(*)]; Rats! 2.3.1 [PEG];
SableCC 3.7 [LALR(1)]; DParser 1.2 [GLR]; JSGLR (from
Spoofax) 1.1 [GLR]; Rascal 0.6.1 [GLL]. Tests run 10x with gen-
erous memory, average/stddev computed on last 8 to avoid JIT cost.
Error bars are negligible but show some variability due to garbage
collection. To avoid a log scale, we use a separate graph for GLR,
GLL parse times.

reported Elkhound times are the Windows time multiplied
by that OS X to Windows ratio.

For this experiment, ALL(*) outperforms the other parser
generators and is only about 20% slower than the hand-
built parser in the Java compiler itself. When comparing
runs with tree construction (marked with † in Figure 9),
ANTLR 4 is about 4.4x faster than Elkhound, the fastest
GLR tool we tested, and 135x faster than GLL (Rascal).
ANTLR 4’s nondeterministic ALL(*) parser was slightly
faster than JavaCC’s deterministic LL(k) parser and about
2x faster than Rats!’s PEG. In a separate test, we found that
ALL(*) outperforms Rats! on its own PEG grammar con-
verted to ANTLR syntax (8.77s vs 12.16s). The LALR(1)
parser did not perform well against the LL tools but that
could be SableCC’s implementation rather than a deficiency
of LALR(1). (The Java grammar from JavaCUP, another
LALR(1) tool, was incomplete and unable to parse the cor-
pus.) When reparsing the corpus, ALL(*) lookahead gets
cache hits at each decision and parsing is 30% faster at 3.73s.
When reparsing with tree construction (time not shown),
ALL(*) outperforms handbuilt Javac (4.4s vs 4.73s). Repars-
ing speed matters to tools like development environments.

The GLR parsers we tested are up to two orders of mag-
nitude slower at Java parsing than ALL(*). Of the GLR tools,
Elkhound has the best performance primarily because it re-
lies on a linear LR(1) stack instead of a GSS whenever
possible. Further, we allowed Elkhound to disambiguate
during the parse like ALL(*). Elkhound uses a separate
lexer, unlike JSGLR and DParser, which are scannerless.
A possible explanation for the observed performance dif-
ference with ALL(*) is that the Java grammar we ported to
Elkhound and DParser is biased towards ALL(*), but this
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Tool Time RAM (M)
Javac† 89 ms 7

ANTLR4 201 ms 8
JavaCC 206 ms 7

ANTLR4† 360 ms 8
ANTLR3 1048 ms 143
SableCC† 1,174 ms 201

Rats!† 1,365 ms 22
JSGLR† 15.4 sec 1,030
Rascal† 24.9 sec 2,622

(no DFA) ANTLR4 42.5 sec 27
elkhounda 3.35 min 3

DParser† 10.5 hours 100+
elkhound† out of mem 5390+

Figure 10. Time and space to parse and optionally build
trees for 3.2M Java file. Space is median reported after GC dur-
ing parse using -XX:+PrintGC option (process monitoring for
C++). Times include lexing; all input preloaded. †Building trees.
aDisambiguating during the parse, no trees, estimated time.

objection is not well-founded. GLR should also benefit from
highly-deterministic and unambiguous grammars. GLL has
the slowest speed here perhaps because Rascal’s team ported
SDF’s GLR Java grammar, which is not optimized for GLL
(Grammar variations can affect performance.) Rascal is also
scannerless and is currently the only available GLL tool.

The biggest issue with general algorithms is that they are
highly unpredictable in time and space, which can make
them unsuitable for some commercial applications. Fig-
ure 10 summarizes the performance of the same tools against
a single 3.2M Java file. Elkhound took 7.65s to parse the
123M Java corpus, but took 3.35 minutes to parse the 3.2M
Java file. It crashed (out of memory) with parse forest con-
struction on. DParser’s time jumped from a corpus time of
98s to 10.5 hours on the 3.2M file. The speed of Rascal
and JSGLR scale reasonably well to the 3.2M file, but use
2.6G and 1G RAM, respectively. In contrast, ALL(*) parses
the 3.2M file in 360ms with tree construction using 8M.
ANTLR 3 is fast but is slower and uses more memory (due
to backtracking memoization) than ANTLR 4.

7.2 ALL(*) performance across languages
Figure 11 gives the bytes-per-second throughput of ALL(*)
parsers for 8 languages, including Java for comparison. The
number of test files and file sizes vary greatly (according to
the input we could reasonably collect); smaller files yield
higher parse-time variance.
• C Derived from C11 specification; has no indirect left-recursion,

altered stack-sensitive rule to render SLL (see text below): 813
preprocessed files, 159.8M source from postgres database.
• Verilog2001 Derived from Verilog 2001 spec, removed indirect

left-recursion: 385 files, 659k from [3] and web.
• JSON Derived from spec. 4 files, 331k from twitter.
• DOT: Derived from spec. 48 files 19.5M collected from web.
• Lua: Derived from Lua 5.2 spec. 751 files, 123k from github.
• XML Derived from spec. 1 file, 117M from XML benchmark.

• Erlang Derived from LALR(1) grmr. 500 preproc’d files, 8M.

Some of these grammars yield reasonable but much
slower parse times compared to Java and XML but demon-
strate that programmers can convert a language specifica-
tion to ANTLR’s meta-syntax and get a working grammar
without major modifications. (In our experience, grammar
specifications are rarely tuned to a particular tool or pars-
ing strategy and are often ambiguous.) Later, programmers
can use ANTLR’s profiling and diagnostics to improve per-
formance, as with any programming task. For example, the
C11 specification grammar is LL not SLL because of rule
declarationSpecifiers, which we altered to be SLL in
our C grammar (getting a 7x speed boost).

7.3 Effect of lookahead DFA on performance
The lookahead DFA cache is critical to ALL(*) performance.
To demonstrate the cache’s effect on parsing speed, we dis-
abled the DFA and repeated our Java experiments. Consider
the 3.73s parse time from Figure 9 to reparse the Java cor-
pus with pure cache hits. With the lookahead DFA cache dis-
abled completely, the parser took 12 minutes (717.6s). Fig-
ure 10 shows that disabling the cache increases parse time
from 203ms to 42.5s on the 3.2M file. This performance is
in line with the high cost of GLL and GLR parsers that also
do not reduce parser speculation by memoizing parsing de-
cisions. As an intermediate value, clearing the DFA cache
before parsing each corpus file yields a total time of 34s in-
stead of 12 minutes. This isolates cache use to a single file
and demonstrates that cache warm-up occurs quickly even
within a single file.

DFA size increases linearly as the parser encounters new
lookahead phrases. Figure 12 shows the growth in the num-
ber of DFA states as the (slowest four) parsers from Fig-
ure 11 encounter new files. Languages like C that have con-
structs with common left-prefixes require deep lookahead
in LL parsers to distinguish phrases; e.g., struct {...} x;

and struct {...} f(); share a large left-prefix. In contrast,
the Verilog2001 parser uses very few DFA states (but runs
slower due to a non-SLL rule). Similarly, after seeing the en-
tire 123M Java corpus, the Java parser uses just 31,626 DFA
states, adding an average of ˜2.5 states per file parsed. DFA
size does, however, continue to grow as the parser encoun-
ters unfamiliar input. Programmers can clear the cache and
ALL(*) will adapt to subsequent input.

7.4 Empirical parse-time complexity
Given the wide range of throughput in Figure 11, one could
suspect nonlinear behavior for the slower parsers. To inves-
tigate, we plotted parse time versus file size in Figure 13 and
drew least-squares regression and LOWESS [6] data fitting
curves. LOWESS curves are parametrically unconstrained
(not required to be a line or any particular polynomial) and
they virtually mirror each regression line, providing strong
evidence that the relationship between parse time and in-
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Grammar KB/sec
XML 45,993
Java 24,972
JSON 17,696
DOT 16,152
Lua 5,698
C 4,238
Verilog2001 1,994
Erlang 751

Figure 11. Throughput in
KByte/s. Lexing+parsing; all
input preloaded in RAM.
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vs number of files parsed. Files
parsed in disk order.
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Figure 13. Linear parse time vs file size. Linear regression
(dashed line) and LOWESS unconstrained curve coincide, giving
strong evidence of linearity. Curves computed on bottom 99% of
file sizes but zooming in for detail in the bottom 40% of parse times.

put size is linear. The same methodology shows that the
parser generated from the non-SLL grammar (not shown)
taken from the C11 specification is also linear, despite be-
ing much slower than our SLL version.

We have yet to see nonlinear behavior in practice but the
theoretical worst-case behavior of ALL(*) parsing is O(n4).
Experimental parse-time data for the following contrived
worst-case grammar exhibits quartic behavior for input a,
aa, aaa, ..., an (with n ≤ 120 symbols we could test in a
reasonable amount of time). S → A $, A → aAA | aA | a.
The generated parser requires a prediction upon each input
symbol and each prediction must examine all remaining in-
put. The closure operation performed for each input symbol
must examine the entire depth of the GSS, which could be
size n. Finally, merging two GSS can take O(n) in our im-
plementation, yielding O(n4) complexity.

From these experiments, we conclude that shifting gram-
mar analysis to parse-time to get ALL(*) strength is not
only practical but yields extremely efficient parsers, compet-
ing with the hand-tuned recursive-descent parser of the Java
compiler. Memoizing analysis results with DFA is critical
to such performance. Despite O(n4) theoretical complexity,
ALL(*) appears to be linear in practice and does not exhibit
the unpredictable performance or large memory footprint of
the general algorithms.

8. Related work
For decades, researchers have worked towards increasing
the recognition strength of efficient but non-general LL and
LR parsers and increasing the efficiency of general algo-
rithms such as Earley’s O(n3) algorithm [8]. Parr [21] and
Charles [4] statically generated LL(k) and LR(k) parsers for
k > 1. Parr and Fisher’s LL(*) [20] and Bermudez and
Schimpf’s LAR(m) [2] statically computed LL and LR
parsers augmented with cyclic DFA that could examine arbi-
trary amounts of lookahead. These parsers were based upon
LL-regular [12] and LR-regular [7] parsers, which have the
undesirable property of being undecidable in general. In-
troducing backtracking dramatically increases recognition
strength and avoids static grammar analysis undecidability
issues but is undesirable because it has embedded mutators
issues, reduces performance, and complicates single-step
debugging. Packrat parsers (PEGs) [9] try decision produc-
tions in order and pick the first that succeeds. PEGs areO(n)
because they memoize partial parsing results but suffer from
the a | ab quirk where ab is silently unmatchable.

To improve general parsing performance, Tomita [26] in-
troduced GLR, a general algorithm based upon LR(k) that
conceptually forks subparsers at each conflicting LR(k) state
at parse-time to explore all possible paths. Tomita shows
GLR to be 5x-10x faster than Earley. A key component of
GLR parsing is the graph-structured stack (GSS) [26] that
prevents parsing the same input twice in the same way. (GLR
pushes input symbols and LR states on the GSS whereas
ALL(*) pushes ATN states.) Elkhound [18] introduced hy-
brid GLR parsers that use a single stack for all LR(1) deci-
sions and a GSS when necessary to match ambiguous por-
tions of the input. (We found Elkhound’s parsers to be faster
than those of other GLR tools.) GLL [25] is the LL analog
of GLR and also uses subparsers and a GSS to explore all
possible paths; GLL uses k = 1 lookahead where possible
for efficiency. GLL is O(n3) and GLR is O(np+1) where p
is the length of the longest grammar production.

Earley parsers scale gracefully from O(n) for determin-
istic grammars to O(n3) in the worst case for ambiguous
grammars but performance is not good enough for general
use. LR(k) state machines can improve the performance of
such parsers by statically computing as much as possible.
LRE [16] is one such example. Despite these optimizations,
general algorithms are still very slow compared to determin-
istic parsers augmented with deep lookahead.

The problem with arbitrary lookahead is that it is impos-
sible to compute statically for many useful grammars (the
LL-regular condition is undecidable.) By shifting lookahead
analysis to parse-time, ALL(*) gains the power to handle any
grammar without left recursion because it can launch sub-
parsers to determine which path leads to a valid parse. Unlike
GLR, speculation stops when all remaining subparsers are
associated with a single alternative production, thus, com-
puting the minimum lookahead sequence. To get perfor-
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mance, ALL(*) records a mapping from that lookahead se-
quence to the predicted production using a DFA for use by
subsequent decisions. The context-free language subsets en-
countered during a parse are finite and, therefore, ALL(*)
lookahead languages are regular. Ancona et al [1] also per-
formed parse-time analysis, but they only computed fixed
LR(k) lookahead and did not adapt to the actual input as
ALL(*) does. Perlin [23] operated on an RTN like ALL(*)
and computed k = 1 lookahead during the parse.

ALL(*) is similar to Earley in that both are top-down and
operate on a representation of the grammar at parse-time,
but Earley is parsing not computing lookahead DFA. In that
sense, Earley is not performing grammar analysis. Earley
also does not manage an explicit GSS during the parse. In-
stead, items in Earley states have “parent pointers” that re-
fer to other states that, when threaded together, form a GSS.
Earley’s SCANNER operation corresponds to ALL(*)’s move
function. The PREDICTOR and COMPLETER operations
correspond to push and pop operations in ALL(*)’s closure
function. An Earley state is the set of all parser configu-
rations reachable at some absolute input depth whereas an
ALL(*) DFA state is a set of configurations reachable from a
lookahead depth relative to the current decision. Unlike the
completely general algorithms, ALL(*) seeks a single parse
of the input, which allows the use of an efficient LL stack
during the parse.

Parsing strategies that continuously speculate or sup-
port ambiguity have difficulty with mutators because they
are hard to undo. A lack of mutators reduces the gen-
erality of semantic predicates that alter the parse as they
cannot test arbitrary state computed previously during the
parse. Rats! [10] supports restricted semantic predicates and
Yakker [13] supports semantic predicates that are functions
of previously-parsed terminals. Because ALL(*) does not
speculate during the actual parse, it supports arbitrary muta-
tors and semantic predicates. Space considerations preclude
a more detailed discussion of related work here; a more de-
tailed analysis can be found in reference [20].

9. Conclusion
ANTLR 4 generates an ALL(*) parser for any CFG with-
out indirect or hidden left-recursion. ALL(*) combines the
simplicity, efficiency, and predictability of conventional top-
down LL(k) parsers with the power of a GLR-like mecha-
nism to make parsing decisions. The critical innovation is to
shift grammar analysis to parse-time, caching analysis re-
sults in lookahead DFA for efficiency. Experiments show
ALL(*) outperforms general (Java) parsers by orders of mag-
nitude, exhibiting linear time and space behavior for 8 lan-
guages. The speed of the ALL(*) Java parser is within 20%
of the Java compiler’s hand-tuned recursive-descent parser.
In theory, ALL(*) is O(n4), inline with the low polynomial
bound of GLR. ANTLR is widely used in practice, indi-
cating that ALL(*) provides practical parsing power without

sacrificing the flexibility and simplicity of recursive-descent
parsers desired by programmers.
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A. Correctness and complexity analysis
Theorem A.1. ALL(*) languages are closed under union.

Proof. Let predicated grammars G1 = (N1, T, P1, S1,Π1,
M1) and G2 = (N2, T, P2, S2,Π2,M2) describe L(G1)
and L(G2), respectively. For applicability to both parsers
and scannerless parsers, assume that the terminal space T is
the set of valid characters. Assume N1 ∩N2 = ∅ by renam-
ing nonterminals if necessary. Assume that the predicates
and mutators ofG1 andG2 operate in disjoint environments,
S1 and S2. Construct:

G′ = (N1 ∪N2, T, P1 ∪ P2, S
′,Π1 ∪Π2,M1 ∪M2)

with S′ = S1 |S2. Then, L(G′) = L(G1) ∪ L(G2).

Lemma A.1. The ALL(*) parser for non-left-recursive G
with lookahead DFA deactivated recognizes sentence w iff
w ∈ L(G).

Proof. The ATN for G recognizes w iff w ∈ L(G). There-
fore, we can equivalently prove that ALL(*) is a faithful im-
plementation of an ATN. Without lookahead DFA, predic-
tion is a straightforward ATN simulator: a top-down parser
that makes accurate parsing decisions using GLR-like sub-
parsers that can examine the entire remaining input and ATN
submachine call stack.

Theorem A.2. (Correctness). The ALL(*) parser for non-
left-recursive G recognizes sentence w iff w ∈ L(G).

Proof. Lemma A.1 shows that an ALL(*) parser correctly
recognizes w without the DFA cache. The essence of the
proof then is to show that ALL(*)’s adaptive lookahead DFA
do not break the parse by giving different prediction deci-
sions than straightforward ATN simulation. We only need

to consider the case of unpredicated SLL parsing as ALL(*)
only caches decision results in this case.

if case: By induction on the state of the lookahead DFA
for any given decision A. Base case. The first prediction
for A begins with an empty DFA and must activate ATN
simulation to choose alternative αi using prefix u � wr.
As ATN simulation yields proper predictions, the ALL(*)
parser correctly predictsαi from a cold start and then records
the mapping from u : i in the DFA. If there is a single
viable alternative, i is the associated production number. If
ATN simulation finds multiple viable alternatives, i is the
minimum production number associated with alternatives
from that set.

Induction step. Assume the lookahead DFA correctly pre-
dicts productions for every u prefix of wr seen by the parser
at A. We must show that starting with an existing DFA,
ALL(*) properly adds a path through the DFA for unfamiliar
u prefix of w′r. There are several cases:

1. u � w′r and u � wr for a previous wr. The lookahead
DFA gives the correct answer for u by induction assump-
tion. The DFA is not updated.

2. w′r = bx and all previous wr = ay for some a 6= b. This
case reduces to the cold-start base case because there is
no D0

b−→ D edge. ATN simulation predicts αi and adds
path for u � w′r from D0 to fi.

3. w′r = vax and wr = vby for some previously seen
wr with common prefix v and a 6= b. DFA simulation
reaches D from D0 for input v. D has an edge for b
but not a. ATN simulation predicts αi and augments
the DFA, starting with an edge on a from D leading
eventually to fi.

only if case: The ALL(*) parser reports an error for w /∈
L(G). Assume the opposite, that the parser successfully
parses w. That would imply that there exists an ATN con-
figuration derivation (S, pS , [], w) 7→∗ (S′, p′S , [], ε) for w
throughG’s corresponding ATN. But that would requirew ∈
L(G). Therefore the ALL(*) parser reports a syntax error for
w. The accuracy of the ALL(*) lookahead cache is irrelevant
because no path exists through the ATN or parser.

Lemma A.2. The set of viable productions for LL is always
a subset of SLL’s viable productions for a given decision A
and remaining input string wr.

Proof. If the move-closure analysis operation does not reach
stop state p′A for submachine A, SLL and LL behave identi-
cally and so they share the same set of viable productions.

If closure reaches the stop state for the decision entry rule,
p′A, there are configurations of the form (p′A,−, γ) where,
for convenience, the usual GSS Γ is split into single stacks,
γ. In LL prediction mode, γ = γ0, which is either a single
stack or empty if A=S. In SLL mode, γ = #, signaling no
stack information. Function closure must consider all possi-
ble γ0 parser stacks. Since any single γ must be contained
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within the set of all possible stacks, LL closure operations
consider at most the same number of ATN paths as SLL.

Lemma A.3. For w 6∈ L(G) and non-left-recursive G, SLL
reports a syntax error.

Proof. As in the only if case of Theorem 6.1, there is no
valid ATN configuration derivation for w regardless of how
adaptivePredict chooses productions.

Theorem A.3. Two-stage parsing for non-left-recursive G
recognizes sentence w iff w ∈ L(G).

Proof. By Lemma A.3, SLL and LL behave the same when
w 6∈ L(G). It remains to show that SLL prediction either
behaves like LL for input w ∈ L(G) or reports a syntax
error, signalling a need for the LL second stage. Let V and
V ′ be the set of viable production numbers for A using SLL
and LL, respectively. By Lemma A.2, V ′ ⊆ V . There are two
cases to consider:

1. If min(V) = min(V ′), SLL and LL choose the same
production. SLL succeeds for w. E.g., V = {1, 2, 3} and
V ′ = {1, 3} or V = {1} and V ′ = {1}.

2. If min(V) 6= min(V ′) then min(V) 6∈ V ′ because LL
findsmin(V) nonviable. SLL would report a syntax error.
E.g., V = {1, 2, 3} and V ′ = {2, 3} or V = {1, 2} and
V ′ = {2}.

In all possible combinations of V and V ′, SLL behaves like
LL or reports a syntax error for w ∈ L(G).

Theorem A.4. A GSS has O(n) nodes for n input symbols.

Proof. For nonterminals N and ATN states Q, there are
|N | × |Q| p A−→ q ATN transitions if every every grammar
position invokes every nonterminal. That limits the number
of new GSS nodes to |Q|2 for a closure operation (which
cannot transition terminal edges). ALL(*) performs n + 1
closures for n input symbols giving |Q|2(n + 1) nodes or
O(n) as Q is not a function of the input.

Lemma A.4. Examining a lookahead symbol has O(n2)
time.

Proof. Lookahead is a move-closure operation that computes
new target DFA state D′ as a function of the ATN configu-
rations in D. There are |Q| × m ≈ |Q|2 configurations of
the form (p, i, ) ∈ D for |Q| ATN states and m alternative
productions in the current decision. The cost of move is not
a function of input size n. Closure of D computes closure(c)
∀ c ∈ D and closure(c) can walk the entire GSS back to the
root (the empty stack). That gives a cost of |Q|2 configura-
tions times |Q|2(n + 1) GSS nodes (per Theorem A.4) or
O(n) add operations to build D′. Adding a configuration is
dominated by the graph merge, which (in our implementa-
tion) is proportional to the depth of the graph. The total cost
for move-closure is O(n2).

Theorem A.5. ALL(*) parsing of n input symbols has
O(n4) time.

Proof. Worst case, the parser must examine all remaining in-
put symbols during prediction for each of n input symbols
giving O(n2) lookahead operations. The cost of each looka-
head operation is O(n2) by Lemma A.4 giving overall pars-
ing cost O(n4).

B. Pragmatics
This section describes some of the practical considerations
associated with implementing the ALL(*) algorithm.

B.1 Reducing warm-up time
Many decisions in a grammar are LL(1) and they are easy
to identify statically. Instead of always generating “switch on
adaptivePredict” decisions in the recursive-descent parsers,
ANTLR generates “switch on token type” decisions when-
ever possible. This LL(1) optimization does not affect the
size of the generated parser but reduces the number of looka-
head DFA that the parser must compute.

Originally, we anticipated “training” a parser on a large
input corpus and then serializing the lookahead DFA to disk
to avoid re-computing DFA for subsequent parser runs. As
shown in the Section 7, DFA construction is fast enough that
serializing and deserializing the DFA is unnecessary.

B.2 Semantic predicate evaluation
For clarity, the algorithm described in this paper uses pure
ATN simulation for all decisions that have semantic pred-
icates on production left edges. In practice, ANTLR uses
lookahead DFA that track predicates in accept states to han-
dle semantic-context-sensitive prediction. Tracking the pred-
icates in the DFA allows prediction to avoid expensive ATN
simulation if predicate evaluation during SLL simulation
predicts a unique production. Semantic predicates are not
common but are critical to solving some context-sensitive
parsing problems; e.g., predicates are used internally by
ANTLR to encode operator precedence when rewriting left-
recursive rules. So it is worth the extra complexity to eval-
uate predicates during SLL prediction. Consider the predi-
cated rule from Section 2.1:

id : ID | {!enum is keyword}? ’enum’ ;

The second production is viable only when !enum is keyword

evaluates to true. In the abstract, that means the parser would
need two lookahead DFA, one per semantic condition. In-
stead, ANTLR’s ALL(*) implementation creates a DFA (via
SLL prediction) with edge D0

enum−−−→ f2 where f2 is an aug-
mented DFA accept state that tests !enum is keyword.
Function adaptivePredict returns production 2 upon enum

if !enum is keyword else throws a no-viable-alternative
exception.

The algorithm described in this paper also does not sup-
port semantic predicates outside of the decision entry rule. In
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practice, ALL(*) analysis must evaluate all predicates reach-
able from the decision entry rule without stepping over a ter-
minal edge in the ATN. For example, the simplified ALL(*)
algorithm in this paper considers only predicates π1 and π2

for the productions of S in the following (ambiguous) gram-
mar.
S → {π1}?Ab | {π2}?Ab
A→ {π3}?a | {π4}?a
Input ab matches either alternative of S and, in practice,
ANTLR evaluates “π1 and (π3 or π4)” to test the viability
of S’s first production not just π1. After simulating S and
A’s ATN submachines, the lookahead DFA for S would be
D0

a−→ D′
b−→f1,2. Augmented accept state f1,2 predicts pro-

ductions 1 or 2 depending on semantic contexts π1∧(π3∨π4)
and π2 ∧ (π3 ∨ π4), respectively. To keep track of semantic
context during SLL simulation, ANTLR ATN configurations
contain extra element π: (p, i,Γ, π). Element π carries along
semantic context and ANTLR stores predicate-to-production
pairs in the augmented DFA accept states.

B.3 Error reporting and recovery
ALL(*) prediction can scan arbitrarily far ahead so erroneous
lookahead sequences can be long. By default, ANTLR-
generated parsers print the entire sequence. To recover,
parsers consume tokens until a token appears that could fol-
low the current rule. ANTLR provides hooks to override
reporting and recovery strategies.

ANTLR parsers issue error messages for invalid input
phrases and attempt to recover. For mismatched tokens,
ANTLR attempts single token insertion and deletion to
resynchronize. If the remaining input is not consistent with
any production of the current nonterminal, the parser con-
sumes tokens until it finds a token that could reasonably
follow the current nonterminal. Then the parser continues
parsing as if the current nonterminal had succeeded. ANTLR
improves error recovery over ANTLR 3 for EBNF subrules
by inserting synchronization checks at the start and “loop”
continuation tests to avoid prematurely exiting the subrule.
For example, consider the following class definition rule.

classdef : ’class’ ID ’{’ member+ ’}’ ;

member : ’int’ ID ’;’ ;

An extra semicolon in the member list such as int i;; int

j; should not force surrounding rule classdef to abort.
Instead, the parser ignores the extra semicolon and looks for
another member. To reduce cascading error messages, the
parser issues no further messages until it correctly matches
a token.

B.4 Multi-threaded execution
Applications often require parallel execution of multiple
parser instances, even for the same language. For exam-
ple, web-based application servers parse multiple incoming
XML or JSON data streams using multiple instances of the

same parser. For memory efficiency, all ALL(*) parser in-
stances for a given language must share lookahead DFA.
The Java code that ANTLR generates uses a shared mem-
ory model and threads for concurrency, which means parsers
must update shared DFA in a thread-safe manner. Multiple
threads can be simulating the DFA while other threads are
adding states and edges to it. Our goal is thread safety, but
concurrency also provides a small speed up for lookahead
DFA construction (observed empirically).

The key to thread safety in Java while maintaining high
throughput lies in avoiding excessive locking (synchronized
blocks). There are only two data structures that require lock-
ing: Q, the set of DFA states, and ∆, the set of edges. Our
implementation factors state addition, Q += D′, into an ad-
dDFAState function that waits on a lock for Q before testing
a DFA state for membership or adding a state. This is not
a bottleneck as DFA simulation can proceed during DFA
construction without locking since it traverses edges to visit
existing DFA states without examining Q.

Adding DFA edges to an existing state requires fine-
grained locking, but only on that specific DFA state as our
implementation maintains an edge array for each DFA state.
We allow multiple readers but a single writer. A lock on test-
ing the edges is unnecessary even if another thread is racing
to set that edge. If edge D a−→ D′ exists, the simulation sim-
ply transitions to D′. If simulation does not find an existing
edge, it launches ATN simulation starting from D to com-
pute D′ and then sets element edge[a] for D. Two threads
could find a missing edge on a and both launch ATN sim-
ulation, racing to add D a−→ D′. D′ would be the same in
either case so there is no hazard as long as that specific edge
array is updated safely using synchronization. To encounter
a contested lock, two or more ATN simulation threads must
try to add an edge to the same DFA state.

C. Left-recursion elimination
ANTLR supports directly left-recursive rules by rewriting
them to a non-left-recursive version that also removes any
ambiguities. For example, the natural grammar for describ-
ing arithmetic expression syntax is one of the most common
(ambiguous) left-recursive rules. The following grammar
supports simple modulo and additive expressions.

E → E%E |E+E | id

E is directly left-recursive because at least one production
begins with E (∃E ⇒ Eα), which is a problem for top-
down parsers.

Grammars meant for top-down parsers must use a cum-
bersome non-left-recursive equivalent instead that has a sep-
arate nonterminal for each level of operator precedence:
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E′ →M (+ M)∗ Additive, lower precedence
M → P (% P )∗ Modulo, higher precedence
P → id Primary (id means identifier)

The deeper the rule invocation, the higher the precedence.
At parse-time, matching a single identifier, a, requires l rule
invocations for l precedence levels.
E is easier to read than E′, but the left-recursive version

is ambiguous as there are two interpretations of input a+b+c:
(a+b)+c and a+(b+c). Bottom-up parser generators such as
bison use operator precedence specifiers (e.g., %left ’%’)
to resolve such ambiguities. The non-left-recursive grammar
E′ is unambiguous because it implicitly encodes precedence
rules according to the nonterminal nesting depth.

Ideally, a parser generator would support left-recursion
and provide a way to resolve ambiguities implicitly with
the grammar itself without resorting to external precedence
specifiers. ANTLR does this by rewriting nonterminals with
direct left-recursion and inserting semantic predicates to re-
solve ambiguities according to the order of productions.
The rewriting process leads to generated parsers that mimic
Clarke’s [5] technique.

We chose to eliminate just direct left-recursion because
general left-recursion elimination can result in transformed
grammars orders of magnitude larger than the original [11]
and yields parse trees only loosely related to those of the
original grammar. ANTLR automatically constructs parse
trees appropriate for the original left-recursive grammar so
the programmer is unaware of the internal restructuring. Di-
rect left-recursion also covers the most common grammar
cases (from long experience building grammars). This dis-
cussion focuses on grammars for arithmetic expressions, but
the transformation rules work just as well for other left-
recursive constructs such as C declarators: D → ∗ D, D →
D [ ], D → D ( ), D → id.

Eliminating direct left-recursion without concern for am-
biguity is straightforward [11]. Let A → αj for j = 1..s
be the non-left-recursive productions and A → Aβk for
k = 1..r be the directly left-recursive productions where
αj , βk 6⇒∗ ε. Replace those productions with:

A→ α1A
′|...|αsA′

A′ → β1A
′|...|βrA′|ε

The transformation is easier to see using EBNF:

A→ A′A′′∗

A′ → α1|...|αs
A′′ → β1|...|βr

or just A → (α1|...|αs)(β1|...|βr)∗. For example, the left-
recursive E rule becomes:

E → id (% E |+ E)∗

This non-left-recursive version is still ambiguous because
there are two derivations for a+b+c. The default ambiguity
resolution policy chooses to match input as soon as possible,
resulting in interpretation (a+b)+c.

The difference in associativity does not matter for expres-
sions using a single operator, but expressions with a mixture
of operators must associate operands and operators accord-
ing to operator precedence. For example, the parser must
recognize a%b+c as (a%b)+c not a%(b+c).The two inter-
pretations are shown in Figure 14.

To choose the appropriate interpretation, the generated
parser must compare the previous operator’s precedence to
the current operator’s precedence in the (%E |+E)∗ “loop.”
In Figure 14, E is the critical expansion of E. It must match
just id and return immediately, allowing the invoking E to
match the + to form the parse tree in (a) as opposed to (b).

To support such comparisons, productions get precedence
numbers that are the reverse of production numbers. The
precedence of the ith production is n − i + 1 for n original
productions ofE. That assigns precedence 3 toE → E%E,
precedence 2 to E → E + E, and precedence 1 to E → id.

Next, each nested invocation of E needs operator prece-
dence information from the invoking E. The simplest mech-
anism is to pass a precedence parameter, pr, to E and re-
quire: An expansion of E[pr] can match only those subex-
pressions whose precedence meets or exceeds pr.

To enforce this, the left-recursion elimination procedure in-
serts predicates into the (% E | + E)∗ loop. Here is the
transformed unambiguous and non-left-recursive rule:

E[pr]→ id ({3 ≥ pr}? %E[4] | {2 ≥ pr}? + E[3])∗

References to E elsewhere in the grammar become E[0];
e.g., S → E becomes S → E[0]. Input a%b+c yields the
parse tree for E[0] shown in (a) of Figure 15.

Production “{3 ≥ pr}? %E[4]” is viable when the prece-
dence of the modulo operation, 3, meets or exceeds parame-
ter pr. The first invocation ofE has pr = 0 and, since 3 ≥ 0,
the parser expands “% E[4]” in E[0].

When parsing invocation E[4], predicate {2 ≥ pr}? fails
because the precedence of the + operator is too low: 2 6≥ 4.
Consequently,E[4] does not match the + operator, deferring
to the invoking E[0].

A key element of the transformation is the choice of
E parameters, E[4] and E[3] in this grammar. For left-
associative operators like % and +, the right operand gets
one more precedence level than the operator itself. This
guarantees that the invocation of E for the right operand
matches only operations of higher precedence.

For right-associative operations, the E operand gets the
same precedence as the current operator. Here is a variation
on the expression grammar that has a right-associative as-
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Figure 14. Parse trees for a%b+c and E → id (% E|+ E)∗
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E[2]
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(a) a%b+c (b) a=b=c
assoc (a%b)+c assoc a=(b=c)

Figure 15. Nonterminal Expansion Trees for nonterminal
E[pr]→ id ({3 ≥ pr}? %E[4] | {2 ≥ pr}? + E[3])∗

signment operator instead of the addition operator:

E → E % E |E =right E | id

where notation =right is a shorthand for the actual ANTLR
syntax “|<assoc=right> E =right E.” The interpretation
of a=b=c should be right associative, a=(b=c). To get that
associativity, the transformed rule need differ only in the
right operand, E[2] versus E[3]:

E[pr]→ id ({3 ≥ pr}? %E[4] | {2 ≥ pr}? = E[2])∗

The E[2] expansion can match an assignment, as shown
in (b) of Figure 15, since predicate 2 ≥ 2 is true.

Unary prefix and suffix operators are hardwired as right-
and left-associative, respectively. Consider the following E
with negation prefix and “not” suffix operators.

E → −E |E ! |E%E | id

Prefix operators are not left recursive and so they go into the
first subrule whereas left-recursive suffix operators go into
the predicated loop like binary operators:

E[pr]→ (id | − E[4])
({3 ≥ pr}? ! | {2 ≥ pr}? %E[3])∗

Figure 16 illustrates the rule invocation tree (a record of
the call stacks) and associated parse trees resulting from an
ANTLR-generated parser. Unary operations in contiguous
productions all have the same relative precedence and are,

E[0]

!!E[4]

E[4]

a

-

-

E

!E

!E

E

E

a

-

-

E[0]

E[3]

!b

%E[4]

a

-

E

E

!E

b

%E

E

a

-

(a) --a!! (b) --a!! (c) -a%b! (d) -a%b!
((-(-a))!)! (-a)%(b!)

Figure 16. Nonterminal call trees and parse trees for pro-
ductions E → −E |E ! |E%E | id

therefore, “evaluated” in the order specified. E.g., E →
−E | + E | id must interpret -+a as -(+a) not +(-a).

. Nonconforming left-recursive productions E → E or
E → ε are rewritten without concern for ambiguity using
the typical elimination technique.

Because of the need to resolve ambiguities with predi-
cates and compute A parameters,

C.1 Left-Recursion Elimination Rules
To eliminate direct left-recursion in nonterminals and re-
solve ambiguities, ANTLR looks for the four patterns:

Ai → AαiA (binary and ternary operator)
Ai → Aαi (suffix operator)
Ai → αiA (prefix operator)
Ai → αi (primary or “other”)

The subscript on productions,Ai, captures the production
number in the original grammar when needed. Hidden and
indirect left-recursion results in static left-recursion errors
from ANTLR. The transformation procedure from G to G′

is:

1. Strip away directly left-recursive nonterminal references

2. Collect prefix, primary productions into newly-created
A′

3. Collect binary, ternary, and suffix productions into newly-
created A′′

4. Prefix productions in A′′ with precedence-checking se-
mantic predicate {pr(i)>= pr}? where pr(i) = {n −
i+ 1}

5. Rewrite A references among binary, ternary, and prefix
productions as A[nextpr(i, assoc)] where
nextpr(i, assoc) = {assoc == left ? i+ 1 : i}

6. Rewrite any other A references within any production in
P (including A′ and A′′) as A[0]

7. Rewrite the original A rule as A[pr]→ A′A′′∗

In practice, ANTLR uses the EBNF form rather thanA′A′′∗.
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