ﬁﬁvj‘ﬁ¥
%§ {WST. OF TECﬁnkzza_

APR 5 1366 *

LIBRARIES

THE ON-LINE GRAPHICAL SPECIFICATION OF COMPUTER PROCEDURES
by

WILLIAM ROBERT SUTHERLAND

B.E.E., Rensselaer Polytechnic Institute

(1957)

M.S., Massachusetts Instiﬂute of Technology

(1963)

SUBMITTED IN PARTTAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January, 1966

Signature Of Author. P R E R N A R I B R A I R R A I I I B I RN BRI I AL R AN
Department of Electrlcal Engineering, January 10, 1966

Certified DY, ..cvvevevevnnnnennns e eteereceeneerieanas et teteeei e
**** — Thesis Superv1sor
Accepted By.eueseenns T T TR T T T e e

THE ON-LINE GRAPHICAL SPECIFICATION OF COMPUTER PROCEDURES
by

WILLTAM ROBERT SUTHERLAND

Submitted to the Department of Electrical Engineering on
January 10, 1966, in partial fulfillment of the require-
' ments for the degree of Doctor of Philosophy.

ABSTRACT

An interactive computer graphics system may be used for describing
procedures in a two-dimensional programming language as well as for the more
usual task of manipulating graphical data. The work described here is con-
cerned with the graphical specification of procedures which then may be

~applied to problem data obtained from any source. The notation used to form
a two-dimensional description of a procedure and the conventions used to
control the procedure's execution are described.

An experimental graphical programming system has been created for the
TX-2 Computer. With this system one may draw an arbitrary symbol and give
it a meaning. The system has a "macro" capability enabling a new symbol to
be defined as a combination of operators. A procedure may be executed after

initial values are assigned. A number of debugging features are included in
the system.

The conventions descrlbed make a graphical procedure description a
natural way of expressing parallel operations. The standard notions of flow
must be substantially modified. Explicit flow control is generally omitted
but may be included at the users option. Some aspects of compiling from a
graphical program are also discussed.

Thesis Supervisor: Claude E. Shannon

Title: Donnef Professor of Science

38

ACKNOWLEDGMENTS

T would like to thank Professors C. E. Shannon, S. A. Coons, and
T. G. Stockham, Jr. for their help and advice. Their comments and enthusiasm
provided me with a great deal of stimulation and direction.

The interest and criticism of L. G. Roberts and J. A. Feldman of

Lincoln ILaboratory was especially valuable. They clarified a number of subtle

points during many hours of discussion. My brother, Ivan, provided timely
advice as well as much of the earlier computer graphics experience upon
which this work rests.

The support of the M. I. T. Lincoln Laboratory made my research
possible. J. I. Raffel, J. L. Mitchell and Group 23 provided the equipment,
assistance, and TX-2 computer time required. Thanks are due to P. Rovner
for his summer assistance on the project and to Ellin Foreman who retyped
my writing many times.

Finally, this work would not have been possible without the patience

and support of Linda.

Abstract

Acknowledgements

TABLE OF CONTENTS

Table of Contents

List of Figures

Chapter I.

Chapter IT.
Ché,pter III.
Chaéter Iv.
Chapter V.

Chapter VI.
Chapter VII.

Chapter VIII.

Appendix A.
~ B.

c.

Bibliography

Introduction

Graphical Language

Graphical Procedure Description
Graphical Procedure Conventions

The Experimental System

A Two-Dimensional Language Scheme
Considerations in Compiling Machine Code

Conclusions and Recommendations

System Control Commands
Experimental System Primitive Operations

The CORAL ILenguage and Data Structure

Biographical Note

17
3k
43
9
7
86

95
102

107

111

‘124

127

Figure

Figure

Figure

Figure

1.2.
1.3.
1.4,
1.5.
1.6.

2.1.
2.2.
2.3.
2.k,

3.1.
3.2.
3.3
3.k,

L.1.
h.2,
L.3.
L.oh.
4. 5.
4. 6.
.7,

LIST OF FIGURES

Basic Symbols‘

Connected Program

Initial Values

Initial Values

Procedure After Execution

Variable Values Shown

Man-Machine Graphical Communication

System Block Diagram
Graphical Symbol Connection
Positional Connection

Results of Moving Symhbols

Grapnical Arithmetic Example
Another Arithmetic Example
Graphical Syntax Error

New Symbols for Transfer Function

Flow Forks and Joins
Example Procedure
Corrected Example

Example With Flow Control
Connection Examples

Flow Path Pileces

Required-Data Join

12
12
1k
1h
15
15

19
21
27
28

30

35
37
39

Ll
L6
49

53
54
56

Figure 5.1.
5.2.
5.3.
5.k,

Figure 6.1.

Figure T.1.

T.2.

Appendix C

Figure 1.

Control Responses
Automatically Connected Symbols
Debugging Features

Trap and Data Probe Operators

Graphical Associative Programming Language

Parallel Operations

Independent Operations

Basic Ring Element Structure

Example of Block Form

66
68

73
[

81

9L
92

113

11k

. ' ' CHAPTER T

INTRODUCTION

Men find pictures useful for communicating with computers as well as
for conversing with each ofher. The possibilities for man-machine graphical
commﬁnication range from the output of a simple graph to a complicated two-
way conversation. Many of the answers which machines find for us are most
conveniently presented in a pictorial form; much input data is too. Data
such as the shape of a car body, a graph of rising sales, the predicted
motions of an orbiting satellite, or an ordinary weather map can be depicted

"on a computer display or automatically drawn chart. Problem data in graphical
form has been the concern of many computer graphics efforts.

The program given to a computer for solving a problem need not be in
a written format. One might graphically define a procedure for handling data
obtained from a radar set, from a ticket reservation office, or from some
other source. This paper describes a graphical form of procedure specification

and a working experimental system based on this technique.

BACKGROUND -

The advantages of graphical input and output of data are obvious. The
system devéloped by Roberts.[eh] illustrates capabilities which are in current
use. A facsimile device attached to the computer scans é photograph of a set

of solid objects. From this information the computer creates a perspective

L

line-drawing on the output display. The system user may rotate and move the
view creating the impression of the observer moving about in real space.

The computer makes appropriate assumptions about hidden portions of the
objects so that in effect one may go around behind the photograph and take
a look.

To accomplish the input and output of graphic data, a number of hard-
ware devices have been developed. Cathode ray tube displays and automatic
plotters exist in great variety. Graphic input devices include flying-spot
scanners, TV cameras, and the relatively new RAND tablet [3]. This device
con51sts of a writing surface with an embedded grid of wires and a stylus
used to write on the surface. Electronic circuits provide the computer w1th
continuous stylus coordinate information. Input of graphic data may also be
accomplished with a light-pen and cathode-ray display.

Another aspect of computer graphics involves a close coordination
between man and machine, on-line in real time. They interact through pié-
tures rather than through the written languages generally used for communication
with computers. The most widely known interactive graphics system is

SKETCHPAD [28]. It successfully demonstrates the desirability of two-way

_graphical communication between man and computer. Using a light-pen and

computer-driven display, the operator is able'to draw a picture on the display
face. He may view, move, modify, and erase the picture and its parts in a
number of convenient ways. In addition, he can apply various constraints to
the picture parts to maintain desired geometrical relationships. The operator
need not be a skilled computer expert to use the system. The SKETCHPAD

report has been widely distributed and has influenced many computer graphics

L e

efforts including this one.

A three-dimensional SKETCHPAD has been developed [11]. It allows a
user to manipulate top, front, side, and perspective views of wire frame
objects. The General Motors Research Laboratory is developing a comprehensive
system intended to automate a large portion of the blueprint paperwork
associated with automobile design t33]. The system there has faéilities for
scanning-in graphical information, changing the resulting displayed picture
in an interactive mode, and then making hard copy prints of the new results.
Similar systems are being developed elsewhere in industry and at universities
[26].

| A1l of the.work mentioned so.%ar has been concerned with graphical
data. Very little has been accomplished toward the graphical specification
of procedures. Systems designed to produce flow-charts from written computer
programs have been reported [8, 16], but these efforts deal with the problems
of program analysis. In the realm of program synthesis, a preliminary étart
on a flow-chart compiler has been reported from M.I.T. [3l].. This compiler

is designed to accept MAD language statements placed in flow-chart boxes.

‘ *
- Graphical programming work, unpublished as yet, 1s also proceeding at the

_ RAND Corporation. Otherwise, it appears that on-line graphical procedure

specification has been a neglected field.

AN INTRODUCTORY EXAMPLE

The following example is presented to introduce the basic notions of |

graphical programming described in succeeding chapters. It illustrates how

* pyblication of the details of GRAIL by T. Ellis and W. Sibley of RAND
is expected soon. ‘

one uses the graphical programming system that has been created on the TX-2
Computer at the M.I.T. Lincoln Laboratory. The chosen problem is to accept

a8 series of numbers typed in on a keyboard and to type out their running sum.
In addition, we will require that the computer display on the scope face the
largest of the input numbers. The problem is trivial, but it is specifically
chosen to illustrate a graphically formatted procedure working on non-graph-
ical data.

We will program this task by creating a pictorial procedure description
on the computer display. The drawing facility provided within the experimental
graphical pfogramming system is very similar to that of SKETCHPAD. The reader
éﬁouid envision the system operating as follows: By giving commands with push
buttons, foot pedals, and a keyboard, and by manipulating the light-pen as a
pencil on the displey face, the user creates a picture on the display. To
draw a line a user places the pen at a starting location, presses a button
labelled DRAW, and then moves the pen to a terminal position. The computer
will display a line connecting the initiél and terminal locations. One may

delete a graphical entity by pointing at it with the light-pen and pressing

- & DELETE button. A detailed description of the controls of the experimental

- system will be found in Chapter V and Appendix A.

Any programming language, written or graphical, must include some prim-
itive operations. To accomplish the defined task one needs actions which
permit typing in and out, addition, and comparison. The experimental system
provides these actions as primitives, but makes no restriction on the shape
of the symbol used to represent each. Thus, the first programming step is

to construct a symbol for each action needed in the example. This is done by

10

drawing a master picture for each symbol and designating terminals for connec-
tion to other symbols. The computer must be told which primitive action each
master symbol repfesents. Replicas of the master symbols will then be used
for constructing the pictorial program. Figure 1.1 shows the six symbols
created for this example with their names directly above each symbol. The
slanting tops and bottoms of the elements are intended to convey a sense of
direction, indicating that inputs are on the left and outputs on the right.
The detached dots to the left and right of each symbol are flow terminals.
A1l operations have provision for flow in (to activate the operation) and
flow Qut (to activate a succeeding operation). The flow terminals are
optional and may be deleted when not needed.

The meaning of the addition operator should be clear. The type-in
and type-out operators at run-time are a data source and sink and represent
the actions of the keyboard and printer. The comparison operator, "GRTR",
produces a boolean output of true if the upper data value is larger than the
lower. The "SEE" operation converts its one data input into visible text
representing the data value. The last operation, "PASS", does not have a
direct coﬁnterpart in written programming. This operator serves as a valve
controlling the passage of the upper dafa variable through the operator. The
lower data input is a boolean control; true means pass the data and false,
block it.

Figure 1.2 shows the six operators connected together to make the
program. This program was made by éalling up replicas of the master symbols
and then connecting terminals with lines. Note that the only explicit flow

lines (dashed lines) are those used to reactivate the type-in operator after

11

e

i
H

3
e

Basic Symbols

1

1

igure

F

» EXAMPLE

Connected Program

2

1

Figure

12

g g

pygeose

g

g

T W

R

A g R

SO, ——

s

SR—

o g g e e

i

each type-out. Everywhere else the flow terminals have been deleted, fof}the
data connections serve to indicate how the procedure should operate. Before
the program can be run, initial values must be assigned by placing the desired
values on the data terminals as indicated in Figures 1.3 and i.h. The num-
erical values are obtained from'the keyboard used by the operator. The -
operatqr keys in a number, picks up the light-pen, and places the number on
the desired variable in the program. The particular numbers shown in Figures
1.3 and 1.4 were chosen at random.

When the procedure is activated the user may type in numbers which
constitute the problem data. For each input humber he obtains the running
sum oﬁ the output printer. The greatest input number is displayed as sh;wn
in Figure 1.5. Except for some side issues, this is the end of the example
since the desired results have been accomplished.

The system provides information about program execution to the user.
The symbols of active operators blink so ‘that one can follow the procedure's
execution and obtain a useful visualization of its operation. The blinking

of symbols is most useful in a slow step-by-step mode of operation in which

the computer does a set of operations and then waits for the push of a button

‘before moving on to the next set. If we operate the example in this mode, we

will find out that several things go on at once. After the type-in operator

has produced a new data value, the addition and comparison operations will be
performed simultaneously as indicated by the data connections. The specifica-
tion of parallel processing operations is accomplished implicitly by removing
flow from the program where not needed. ILittle thought was given to an order

for activating the process pieces during the construction of the program.

13

e

2 EXAMPLE

S R T S SRR S

R R R

The 4 dots are the pen tracking cross

NOTE

igure 1.4

Initial Value Assignment
F

Initial Value Assignment
FPigure 1.3

W
-
Q
z
<
x
w
-

e O T R D R S T S S B

=
=

W
J
%
<
>
W
-

Procedure After Execution

1.5

Figure

+ EXAMPLE

RS SRR R

Variable Values Shown

1.6

Figure

15

w
_
|

W

5
¥

This freedom from explicit ordering is one of the most valuable results of
this work.

There is a discrepancy in the graphical program presented for this
example. Since the type-in operator triggers the addition and comparison
operators, why does not the addition operator continuously trigger itself?
As the program is drawn this would indeed happen, and the program would
operate incorrectly. In Chapter IV we show how this discrepancy is overcome
and it is mentioned here only for reassurance about this potentially worry-
some difficulty.

People make mistakes and therefore debugging features are an important
part bf any programming system. The experimental graphical pr;gramming
system incorporates a number of such features. In Figure 1.6 for example,
the values of all variables in the graphical program are displayed for exam-
ination. The procedure execution has been interrupted, and the system has
been placed in a special mode. The running sum is now -175, and the most
recent number typed in was 22. The system's debugging features are covered
in Chapﬁer v.

There are two aspects of this introductory example which should be
carefully scrutinized for fundamental principles. First, what are the basic
factors involved in this kind of two-way graphical communication between man
and machihe; and second, what are the underlying concepts involved in the
form of graphical procedure description presented here? A consideration of

these two points will occupy the bulk of the following chapters.

16

‘ , CHAPTER TII

GRAPHICAL LANGUAGE

Before we discuss the details of a "Graphical Programming Ianguage'

~

, we should examine the general term "Graphical Language'; there are at least

o

three different ways in which it has been used.

1. A written programming language used for implementing computer

graphics; i.e., a source language to be fed into a compiler,

thus creating the machine code programs required for graphical

communication with a computer.
EXAMPLE: CORAL*, LISP

: 2. A control language used for running an interactive computer

’ graphics system. The language used by the man to communicate
with the machine.

) EXAMPLE: The push button and light-pen language of SKETCHPAD.

3. A two-dimensional pictorial language used to communicate any-

thing that is convenient to represent that way. The communication
may be man-to-man, or as in SKETCHPAD, machine-to-man.
EXAMPIE: The language of circuit diagrams or architectural

blueprints.
e The written language defined in (1) above is a tool used to create
the programs for a computer graphics system. The latter two kinds of graph-
ical language have been badly confused and misused in the past. A clear

appreciation of the difference between them is essential. The term "Pictorial

T s,

T
CORAL is the written language used to create the experimental graphical
programming system reported here. See Appendix C.

1
|
i

- 17

Michael Hoffer

Michael Hoffer
Use as argument for combined textual&visual approach

Y Vi

W

A RS

R
B

g e

s ¢ e
E¥g

ST g™

g T g g I

g

L
7
|
i

Graphical Language" (3 above) is meant to apply to a picture language; a
two-dimensional representation of something on a piece of paper, on a photo-
graph, or on a computer display. The picture may have been created by a man
with a pencil, by light striking a photographic emulsion, or by some device
under computer control. The "Control Graphical Language" (2 above) is very
different. Tt is the language used to tell the computer where to place and
how to connect the picture parts on the computer display. Consider a man with
only a wooden pointer verbally telling an intelligent robot with a piece of
chalk hoﬁ to draw a picture on a blackboard. The verbal stream of instructions
and the pointer motions are the control language, and the resulting picture
on the blackboard is the pictorial graphical language. They are two different
things.

The man-machine graphical communication in a SKETCHPAD-like system
takes place as illustrated in Figure 2.1. The man communicates his desires
and instructions to the machine via one graphical language (a control language),
and the machine verifies back its "understanding” of the man's wishes via
another graﬁhical language (a picture language). To illustrate this point
let us look at the functional parts of some unspecified graphical communication
system. The illustrative system described will be a general one, and not one

criented toward any particular subject.

THE FUNCTIONAL PARTS OF AN UNSPECIFIED SYSTEM
By examining the parts of an interactive graphical system we hope to
gain a better understanding of how the system operates and of the roles

played by the control and graphical languages. In addition, we will see how

18

3-23-6570

MAN VIA CONTROL LANGUAGE COMPUTER

/ ’/’/////// R/
——————, %

/

VIA PICTURE LANGUAGE

Man-Machine Graphical Communicetion

Figure 2.1

19

the parts affect the system's capabilities. Figure 2.2 shows the basic
system parts with dark borders. Rectangles indicate data and oval shapes
represent programs obtained from the written language and compiler shown at
| the top. The "Internal Representation" is some specialized arrangement of
computer memory containing the problem information in a form useful to the
system. Historically, the internal representation has been a list structure
! which the computer could examine or manipulate as required.

The first system part to be considered is Rl which takes control
R language statements as input and builds up the internal representation step
5 by step. In this way the user's actions with the light-pen and buttons are
converted into a computer memory versioﬁ of the picture he desires. The
display program (R2) converts the internal representation into a pictorial
output for the man to view. These two actions go on together. The remain-
\ ing parts in Figure 2.2 represent additions which might be made to the basic
system of R1 and R2.

Adding an extra program (R3) and suitable scanning equipment ﬁould
allow the direct input of graphical information. Instead of building up the
picture étep by step with a control language, the user might draw a picture on
a piece of paper and use that as input data for the machine. Other inputs
are also’possible. An additional program (RL4t) would allow the system to

accept written input data. This data might be a written version of a pro-

[gram and a flow chart of the written program might be the desired output.
! Combinations of the three kinds of input (written, control, and pic-
torial) will be useful. After a written program has been accepted as data

and a flow chart produced on the computer display, one might wish to use the

20

S .v....,_...‘.,.-.m-}.:

’ 3-23-6511
| WRITTEN MACHINE
LANGUAGE CODE
*» I I
| |
4

N M |
|
Y CONTROL R R INTERNAL PICTURE
| LANGUAGE CART 1 REPRESENTATION LANGUAGE
)

W
; !
1 RS
) B1CTURE sce:ugNG OUTPUT . OTHER OUTPUT
, LANGUAGE PARSING PROGRAM PUNCHED TAPE
;
| R4
l WRITTEN INPUT
l LANGUAGE PROGRAM
» OR OTHER

re | Y
! INTERNAL
5 ACTION
; PROGRAM
| R7
) DATA INTERPRETIVE DATA

ACTION INPUT

i ‘ OUTPUT

‘ . ' System Block Diagram

Figure 2.2

i ‘ : , 2l

interactive graphical control language to make changes to the flow chart.
? Similarly, one might wish to updaté a blueprint which has been scanned into
the computgr. It should be possible to obtain a written version of the
i correcfed program, or perhaps to get a punched paper tape of machine tool
’ instructions for making the part drawn on the blueprint [19]. The program
part labelled R5 accomplishes this sort of action.
i The internal representation may also contain information which specifies
how changes should be made to other data represented inside the machine. This
situation is found in the constraint features of SKETCHPAD*. Consider the
) simple case where a constraint has been created in the internal representation.
This éonstraint is éssociated with the two end points of a line and indicates
that the line is to be kept horizontal. Whenever the line is moved off the
; horizontal, some program (R6) must make the line horizontal again.
The utility of a graphical communication systeﬁ is determined by the

variety of programs provided within the system. A system with only minimal

Rl and R2 provides a simple drafting capability. To improve that capability,
Rl and R2 must be expanded and other programs (R3 — 6) added. It should be

quite clear in each case how to obtain the additional programs required; use

e

o written language and compiler to make the necessary machine code.
Let us use the functional system to work on some problem. So far
we have subtly assumed that the graphical communication will involve only the

problem data, and that instructions on how to solve the problem will be

*
Refer to SKETCHPAD report for information on constraints.

22

P . . . ————————,

!{o
)

P

provided by explicit programs. The system is useful only with those problems
for which a solution has been programmed and provided. Any man-machine
communication about how tovsolve 5 particular class of problem must be
carried out in advance by a system expert using a writﬁen programming lan-
guage and compiler. What is missing is the ability for man and machine to
converse graphically about how to solve problems, as distinguished from the
ability to converse graphically about the details of a problem to be solved.
With a general-purpose dréwing capability we can draw any picture, .
even one representing a procedure. Difficulties occur only when one wishes
the computervto carry out the graphical procedure and actually do something.
Then the internal representation of the picture used to describe the procedure
must serve as a program to an interpretive action. The result is an active
process which can act on other data. In Figure 2.2 an interpretive action
(R7) uses as its program the same data structure which represents the picture
of the graphically formatted procedure. The system's capabilities are
expanded since graphical communication is no longér restricted to problem data.
Thevdistinction between the system contro; language and the picture

language being used to represent something (be it program or data) is most

Gimportant. In weighing the merits of a particular system one might ask the

three-way question, "Is the system's graphical language natural and easy to
use?". Is the control language natural and easy to use, or is the picture
itself a convenient and clarifying way to represent whatever we have in mind,
or does the written programming language make adding to the system easy?

Confusion is imminent when the term "graphical language" is used carelessly.

This brief examination of system parts has served its purpose, and we will

23

next consider some of the fundamental properties of the various kinds of

graphical language.

GRAPHICAL [ANGUAGE FUNDAMENTALS

A written graphical language is a one-dimensional (linear) language.
At present virtually all communication with computers is accomplished via
written one-dimensional languages. Consequently the theoretical properties
of linear languages have received much attention. All that one need say
about a written graphical language is that it is a standard written computer
programming langugge designed to make creating graphics programs easy.
Several such languages have been implemented by the various groups doing
graphic research [23, 26]. The particular written language used to implement
a graphical communication system has little effect other than programming
convenience on the form of the system's control or pictorial languages.

The control langusges used in graphical communication systems are also
linear (i.e., sequential) languages. The time sequence of button-pushes and
pen-actions is a time-ordered string of operators and operands. For instance,
a command might be: 'Make this parallel to that and perpendicular to that".
The meaning of "this" and "that" is defined when the user points with the
light-pen to some picture part, presses a button called "PARALIEL" and then

points to some other picture part. Since the control and written languages

are both cne-dimensional, it may well be that a single general-purpose

compiler-translator could be used for both. At least one research group is
actively pursuing this hypothesis [26]. It is also convenient to provide a

written language capability within the system's controls. For example, a

2k

S — 1 ot IO

3

typewriter is very useful when one wishes to assign a name to a picture.

The two similar kinds of graphical language discussed so far are both
used. as man-to-machine communication media. The similarity may be partially
ascribed to the fact that present-day computers and computer input devices
are sequential in operation. It is therefore difficult for any man-fo-machine
communication to be accomplished other than sequentially. However, in his
sense bf vision man has a considerable parallel input capability. He can
accept a non-sequential language statement with‘his eyes. Machine-to-man
communication may also be accomplished via a non-sequential language provided
that the sequential nature of the computer output is hidden from the man.

The speed of a computer-driven display masks the time sequence of its outputs,
and even though it works slowly, a computer plotting device draws an entire
picture before the man takes time to look at the results. Thus communication
from‘machine to man is possible with a non-sequential pictorial language.‘ In
trying to understand the fundamentals of a picture language, the guidance
provided by linear languages is very valuable. TFor both kinds of language

we may meke a standard breakdown into symbol set, syntax, and semantics.

SYMBOL SET
The symbol set of a pictorial language, or any language for that
matter, is a clear-cut axiomatic concept. By definition both parties to the

communication must have an a-priori common knowledge of the legitimate symbols

'of the language. The symbols can be arbitrary but both sides must know what .

they are. In addition, given a language statement, the parties to the

communication must be able to identify the individual symbols which make up

25

W

the statement. If two symbols can be placed together and made to look like
a third, confusion may result. Then it may be impossible to decide which
symbol or combination of symbols the author of the statement meant. As long
as the symbols remain within the bounds of clarity, the symbol set may be

any arbitrary mutually-agreeable one.

SYNTAX ,

To create a language statement one uses appropriate symbols and
connects them together. In a linear language there is only one method of
connecting symbols; that of sequential ordering. Each symbol in'a string
has a left and right neighbor. A statement in a pictorial language will
similarly have connected symbols, but it will use conventions other than
simple sequence for indicating symbol connection. There are two ways of
indicating graphical connection of symbols; positional connection and explicit
connection. The distinction is not clear cut and depends on one's point of
view. Positional connection implies that two symbols are related or con-
nected together by virtue of their relative positions. Explicit connection
requires that some direct indication run between the two symbols to show the
connection. A line is a commonly used indicator. Examples of both modes
are shown in Figure 2.3.

That the distinction between these two connection modes is one of
point of view may be argued as follows: Include.the explicit connection
indicator in the symbol set. Now compare the picture of Figure 2.4 with the
one of Figure 2.3. They both look the same. However, in Figure 2.3 there

are two symbols and an explicit connection indicator, while Figure 2.4 has
26

i SYMBOL SET 3-036572

POSITIONAL CONNECTION EXPLICIT CONNECTION

| =dx3y+fxz —> F, >—e

1
) STATEMENT

£

Graphical Symbol Connection
Figure 2.3

27

3
i
)
/
{

T

& -

|

SYMBOL SET

STATEMENT

Positional Connection

Figure 2.k

.28

3-23-6913

e | g, 7

—_——————

three symbols connected by positional conventions at the ends of the line.
The distinction depends on what assumptions we make about the symbol set. A
second argument refutes the first; this argument reemphasizes the importance
of separating the two connection modes. Consider what happens when one of
the symbols is moved. If they are explicitly connected, position is of no

importance and the comnection is maintained. As seen in Figure 2.5, moving

a positionally connected symbol may remove the connection.

Symbol connection by labelling is also possible. Iabels are used as
a substitute for an explicit connection between two symbols. The label is
itself a symbol connected to the original symbol by positional conventions.
Positional and explicit connection conventions both have a place in graphical
communication, but it is important to realize which one is being used in any
particular case.

The symbols used by a pictorial language are affected by the mode of
connection. Symbols which are to be connected by positional relations must
have "sensitive regions" designated as part of the symbol definition [15, 20].
A connection is established only if a region of one symbol overlaps a region
of another symbol. The integral sign in Figure 2.3 has four regions where
it expects other symbols to appear; upper and lower limits, integfand, and
differential. In addition, the integral sign and connectgd arguments are
positionally connected to ahother symbol, the equal sign. Since there can
e only a finite number of different relationships between symbols, the
"sensitive regions" must be discrete. An infinite continuum of allowable
positional relationships is impossible.

Symbols which are to beAexplicitly connected must include as part of

29

BEFORE MOVING 3-23-6514

AFTER MOVING

%3
I}.

POSlTIdNAL CONNECTION EXPLICIT CONNECTION

e .

[
|
E,——Q~

}> ‘ Results of Moving Symbols
I' Figure 2.5

l

f,

!
i

i gy ey

e g ey

T ——]

their definition the allowable terminals for connectors. Just as fhe
"sensitive regions" above were quantized and finite, there must be a finite
number of attachment points to represent the inter-symbol relations. The
term "attachment poinf" is not meant to imply only a geometrical point
although that is often the case. If the symbol were a circle the entire
circumference of the circle could represent one attachment entity. This
symbol could then stand in only one relationship (via explicit connection)
to any other symbol.

It is not immediately obvious how picture syntax affects the kind of
man-machine éraphical communication being considered here. SKETCHPAD for
instance, has very successfully avoided syntax problems. However, its function
was drawing pictures with geometrical relations between the picture parts
rather than the connection of symbols into a procedure description. The
exact geometry depicting the procedure is of little interest. Since the
syntax of a language is concerned with a formal description of how the
language's symbols connect together, picture syntax is more directly relevant
to a graphical procedure description than to a SKETCHPAD drawing. Even so,
there arevvarying degrees of syntactic complexity which one faces.

Coﬁsider a particular graphical system which is designed to accept a
complete picture as input. The pictorial description of a procedure is first
drawn on a piece of paper. The paper is placed in a scanner and the picture
is fed into the computer as a raster of dots. The computer is then faced with
the task of progressing from a knowledge of the dot raster to a full under- |
standing of the procedure described by the input picture. A full scale of

pattern recognition and picture parsing problems must be handled. 1In
31

vy

programming the computer to accomplishvthese tasks, a full and detailed know-
ledge of picture syntax is necessary. Some work has been done in formalizing
picture syntax [13, 21, 22], but there is as yet no commonly accepted "Baékus
Normal Form" for multi-dimensional languages.

Tuckily, the interactive kind of graphical communication described
here places very little demand on our knowledge of picture syntax. The
control language instructions which build up a picture are very explicit and
leave little for the computer to interpret on its own. An input statement

which says explicitly "Connect this terminal to that terminal' has done

whatever picture parsing is necessary. It is most important to note that

the connecting line which then appears is a result of and not the cause of

the computer's knowledge that the two terminals should be connected! This
is a great simplification. We do not force the computer to figure out that
six lines placed appropriately are a box with a plus in it, and that this
means addition. Instead, we call up by name (say ADD) a symbol which the
computer knows means addition even though it may have any shape.

The subject of syntax has been raised to help clarify some of the
basic cdncepts underlying the pictorial language used in graphical communi-
cation systems. Examples where picture syntax plays an important role in the

graphical programming language are presented in the next chapter.

SEMANTICS
The last and most difficult subject in the three part breakdown of
language is semantics. The subject of semantics cannot be considered in

absolute terms out of context. The question "What are the semantics of the

32

Michael Hoffer

|
|
)

£

symbol —w’—- ?" is unanswerable in general. There may be a different
answer for each context in which the symbol appears. It may mean resistor in
one picture, cbiled spring in another, and bumpy road in a third. The meaning
of a symbol is defined either as a semantic primitive or as a combilination of
semantic primitives. The primitives form a set of undefined elements that are
assumed. to be understood. Compléx meanings are formed by embedding simpler
meanings in conventions. These conventions govern how the simple meanings
interact to form the complex meaning. We will drop the subject of semantics
temporarily with the remark that the conventions used to build new meanings

are an important point of interest for any language form.

33

]

|
|
t
|

e T A

CHAPTER ITT

GRAPHICAL PROCEDURE DESCRIPTION

We must next determine a reasonable graphical format and associ-
atéd conventions for representing procedures during an interactive
graphical conversation. In doing so we should expect to draw heavily on the
notational forms which experience has proved valuable. The block diagram
is an initial form to follow. ‘For constructing a pictorial procedure des-
cription we will choose box-like symbols which have input and output terminals.
These terminals will be used for connecting'symbols together by either explicit
or positional conventions. The terminals are portals through which variable
values are introduced to and obtained from a "transfer function" within the
box. Figure 3.1 shows written and graphical forms of an arithmetic compu-
tation. Note that the graphical statement appears very clumsy in comparison
with the written form. There is a well-developed, efficient, compact notation
for written arithmetic which is universally used and understood.

There are, however, some important lessons to be gleaned from the
graphical portion of Figure 3.1. In the graphical statement an explicit
name for the intermediate variable "Z" of the written form is not required.
One can "run a wire" to connect directly to any needed variable. Note also
that "B" is graphically connected to two places‘corresponding to the two
appearances of "B" in the written form. 1In a linear language any particular

instance of a symbol can appear in only one place in the symbol string and

3Y

ey e

O S ——

L
|
J.
|
|

(A)

(B)

(C)

WRITTEN STATEMENT

Z:=AXB+C
W= 2Z+4

Y = 72-(32 + B)

GRAPHICAL STATEMENT

(W)

3-23-6575

()

NOTE: THE LETTERS IN PARENTHESES CORRESPOND TO THE WRITTEN FORM ABOVE

Graphical Arithmetic Example
Figure 3.1

35

i

— UL R

N

can be directly connected only to a left and right neighbor. Many conven-
tions‘such as labels, names, parentheses, etc., are used to overcome this
inherent restriction of_linear languages. A multi-dimensional pictorial
language does not require such devices.

Another distinction between written and éraphical languages has a
different importance. There is no satisfactory way of indicating the total
implications of multiple-valued outputs for a linear language. Linear
language notation often leads one into neglecting the whole story. A
simple example, again from arithmetic, involves the operation of square
root. (See Figure 3.2) As before, the graphical statement is clumsy, but
it is virtually impossible to ignore the fact that there are two resulting

answers.

SEMANTICS AGATN

Let us assume that the individual arithmetic operations in Figure 3.1
are primitive; i.e., we assume that they can be properly performed. If the
reader were told that A = 4 and B = -5 and C = 12 he could determine X and Y
from eithor notational formf There is a procesé implied by the graphical
statement which the reader intuitively understands, or he would not be able:
to carry through to an answer. Furthermore, this process does not involve'
a uniéue sequence for performing the individual operations. The concept

of a unique sequence involves the unwarranted assumption that the operations

‘must be performed sequentially, one at a time. Figure 3.1 vividly indicates

that there are three operations which could be performed simultaneously.

That is not so obvious from the written form.

36

e

i

G

WRITTEN STATEMENT 3-23-6576

N
"

A x [4 + SQRT (Y)]
Z x 4/B%

- X
"

THE FACT THAT THERE ARE TWO VALUES OF X IS EASY TO NEGLECT

GRAPHICAL STATEMENT

Another Arithmetic Example
Figure 3.2

37

If the computer is to carry out graphical program statements like
those in Figure 3.1 and 3.2 the interpreter of the graphical program must
execute the pictorial program in a manner which agrees with what the man
would do. More examples will be necessary before we can attempt to specify
what should be included in the program-execution interpreter. Tt is clear,
however, that the combination of primitive meanings and program activation

conventions serve to define a more complex meaning.

USEFUL SYMBOL. SYNTAX

'~ Symbol portals may be classified by type, in effect giving each portal
a "pipe size". When told to connect two terminals a graphical programming
system may first check to see that the connection is allowable. The user
may thus be prevented from connecting together terminals having incompatible
types. The classification by type'parallels the declaration of data types
used in conventional written languages and gives the computer the ability to
detect certain graphical syntax errors. ‘Figure 3.3 illustrates a typiéal

disallowed connection.

NEW SYMBOLS WITH MEANING

Let us define a new symbol to represent the entire pictorial program
of Figure 3.1. This program has three inputs and two outputs, and can itself
be considered a transfer function. The néw symbol must also have three
input portals and two outputs to match its meaning. ‘Figure 3.4 shows several
pbssible new symbols that could be constructed. After the shape of the

symbol is defined we must declare that this new symbol is to mean the transfer

38

CONNECTION IS ILLEGAL

BOOLEAN —NUMERICAL

Graphical Syntax Error
Figure 3.3

39

3-23-6578

———

(A)

(B)

(C)

(A) o

(C) s

(B)

(X)

® (X)
TI
(Y)
\ - (Y)

L,/’// - (X)

(B)

(A) (Y)

New Symbols For Transfer Function
Figure 3.4

Lo

3-23-6511

N

o

J—

function of the original picture (Figure 3.1). We must also indicate how

the designated terminals on the new symbol match up with the inputs and
outputs of the semantic definition picture. The symbol should be constructed
to remind the user of which terminal is which; the star is a poor symbol_in
this respect.

- The defining process is analagous to the definition of a subroutine
or macro in a conventional written language. The new symbol can be used in
another graphical program, and anpther new symbol can be defined to represent
the resulting, more complicated process. The definition layering can con-
tinue indefinitely. The user need not be.aware of which operations are
primitive and which are defined in terms of other graphical programs. Iif
proper care is taken with regard to variable storage, it is even possible
to use a process recursively in its own semantic definition. Such a recursion
does not involve the pictorial representation of an coperator, but only the
definition of the operator's meaning.

‘Providing symbol terminals with data types, affects the actions
required to define new symbols. DBesides indicating which parts of a new
symbol are to be attachment terminals, a user must indicate the kind of
attachment terminal desired. This is very conveniently combined with the
matching of terminals between a new symbol and semantic definition picture.
Usually the terminal on the symbol should have the same data type as the

corresponding terminal in the defining picture.

L1

SUMMARY

Let us review the notation chosen for the graphical representation
of procedures. The basic symbols are considered as block diagram elements,
although they need not look like blocks. The shape of a symbol is quite
arbitrary. Symbols have input and output terminals which may be connected
to other symbol terminals. Symbols represent operations which transform
data arriving on the input terminals into output values which are sent on
to other operators. Symbols may be assigned a primitive meaning, or they
may have a meaning defined graphically by a picture containing other symbols
conngcted tbgethef. The functioning of a connected network of operations
is controlled by a set of process conventions unspecified as yet. There
remain uncompleted two basic considerations: the first involving the details
of process conventions suitable for use with graphical procedure descriptions,
and the second involving the question of where and how the graphical procedure

gets its data. These topics are covered in the next two chapters.

L2

B

-

¢ S

T

—j

"

CHAPTER IV

GRAPHICAT, PROCEDURE CONVENTIONS

The conventions which control how a graphical program operates are
the next topic of discussion. We cannot in general expect that one partic-
ular set of conventions will suffice for activating every possible form of
graphical program. In a written programming language the normal convention
is to execute each statement in sequential ordér, unless a control transfer
specifies otherwise, and it is not usually possible to execute the statements
in some strange order depending on the number of symbols in each line.
Similarly, We'are looking for a useful process convention to use with proce-

dure specifying pictures.

FLOW CCONVENTION

One simple convention directly indicates how the process is to proceed.
Each operation must be provided with a flow input and a flow output terminal.
These flow terminals must be connected together, and the process activity will
traverse the flow pathways activating each operator in the explicitly indi-

cated order. If we assume that only one processor is available, then the

- flow path must be a single thread through the operators. A flow switch is a

legal operator, but a flow fork is obviously illegal. (See Figure 4.1 A)
If many processors can be at work simultaneously then the flow fork is per-

fectly correct [2]. If we also permit flow forks and many active operators

k3

N

3-23-6579 FILOW IN
FLOW IN +
T oP
BOOLEAN
CONTROL I I
VARIABLE —l—
— 1
— — Y Y
FLOW OUT
BOOLEAN = | oP oP
I] I
y FLOW ouT Y Y
BOOLEAN = O
LEGAL FLOW SWITCH FLOW FORK
(a)

oP oP oP OoP
I I I I

{ Yy

op oP

| [

I I

\ \

FLOW Y FLOW JOIN

_(b)

Flow Forks and Joins

Figure 4.1

L

PN P
£y

Gy

e

we must also allow the possibility of merging flow.paths. Figure 4.1B
shows two possible representations; a discussion of their meaning will be
temporarily postponed. Explicitly controlling the flow of activity through
the program is one way to 1nsure correct operation.

What happens if the network of Figure 4.2A is activated without
specifying any values for A, B, and C? These variables might then have random
values, or perhaps by convention all unspecified values are Zero. Such
conventions ignore the fact that a variable may sometimes have the legitimate
value of "UNDEFINED". It is meaningless to talk about an actual numerical
value for the outputs of the operators in Figure 4,25 before the operations
are performed. Under normal programming conventions one assumes that
variables have random or 'garbage" values until properly assigned a value.
The programmer has the responsibility of arranging for a correct flow order-
ing to insure that variables have proper values assigned before their values
are used. An incorrect flow order may result in the use of bad data and lead
to an incorrecf answer. The variable with a possible value of UNDEFINED is
valuable because a convention may be‘chosen whereby an undefined input will

prevent an operator from being activated.

DATA-FLOW CCONVENTICON

Let us abandon the concept of explicit flow control and instead use the
data connections to guide the process activity through the procedure descrip-
tion. Instead of thinking of activating the procedure parts in a certain
order, it is useful to think of repeatedly écanning the total procedure to

determine which parts are ready to be activated next. The variable with a

L5

4 v o

i,

FLOW 13-23-6580]

START

+ |t—— —o

]
l

(b)

Example Procedure

Figure 4.2

46

A

value UNDEFINED is important since usually an operation with an undefined
input should not be performed. It is thus possible to obtain control over
how a procedure is executed from the data connections present in the proce-
gure. From this point of view the flow path in Figure L.2A is not needed,
and Figure 4.2B is an adequate description of the process. After the values
of A, B, and C are assigned, the addition and multiplication can be done.
The answer is obtained by doing the division after its inputs are defined.
We shall adopt the basic convention that data values sit forever at
terminals unless deliberately changed. Under this convention additional
criteria for determining when an operator should be activated are required.
Some provision must be made for at¢tivating the operator only when appropriate
and not continuously. Two things can be passed down a data line from one
operator to another. The first is the data value, and the second is some
indication of change. The arrival of a new data value at any input will
trigger an operator provided that all of its inputs have defined values.
This convention applied to Figure 4.2B will produce just the desired result.
Modifications to this convention are desirable. A two input operator might

require that new data arrive on both inputs before it can be reactivated.

' We have assumed that data values are present forever at operator input ter-

minals until written over by new values. An alternative treatment is possible.

When an operator is activated it can reset its input variables to a value of
undefined. Then all its inputs must receive new data values before the opera-
tor will be activated again. To provide maximum flexibility each individual

input terminal should have the option of keeping or destroying its data

value when the operator is activated. There should be a visible difference

k7

——gy

—d

which informs a user which option he has designated at each terminal.

Another useful option is possible for any input terminal. Some
coperations may not care if an input is undefined, and will operate correctly
anyway. This possibility should be available for the user to designate if
appropriate. When this option has been chosen for an input terminal, that
terminal will be excluded from the decision of when to activate its operator.

To illustrate the application of the data-flow conventions let us
return to the example contained in Chapter I. That example was incorrect
and would not work as shown. Figure 4.3A is a corrected version where-the
reset option has been chosen fo;'three data inputs. The three circles at
the inputs indicate that the special option is in effect at those terminals.
In each of the three cases, data arriving at the other input terminal would
cause the operator to activate at the wrong time unless prevented from doing
so by an undefined value at the marked input.

In the corrected version of this example normal input terminals retain
their data wvalues. The three terminals which réset their values to undefined .
are sbecial cases. It is of course possible to reverse the basic assumption.

Terminals which retain their input values are then special cases, specially

" marked. Figure L.3B shows the example drawn under these reversed assumptions.

~Under either convention it is necessary to make a special designation only

infrequently; the majority of the input terminals can have either convention
applied. In all future examples unmarked input terminals are assumed to
retain their data values. The possibility of reversing the convention was
mentioned only for illustration.

Figure 4.4 is another version of the example procedure but with

48

N

N

B I —

+ EXAMPLE

Corrected Example
Figure L4.3A

+ EXAMPLE

Example With Conventions Reversed
Figure L4.3B

49

—
g
I
o
O
s
o =
—
B o
Q
R ta\
L D
=
=y
0]
S
£
- [0
w o]
2]
z
£ —_— 7L N i I S— T P ~ — . -

o\

parallel flow paths present to provide an explicit designation of control.
Note that the flow inputs now have the reset option instead of the data

terminals.

FLOW WITHIN THE DATA CONTROL CONVENTIONS

. It will next be shown that the "normal" concept of flow through a
graphical program is optidnally available if a user so desires. Let us
allow an operator to have any number of dummy input variables. The values
of these dummy inputs do not enter in any way into the calculation of
operator oufput values. The dunmy inputs serve only to help control the
activation of the operator under the previously defined conventions. A
flow input to an operator is precisely such a dummy input. A flow input
always has the "reset data to undefined" option chosen. The actual data
value that arrives on a flow terminal is unimportant since only the distinc-
tion between undefined and defined-as-something matters in deciding whether
to trigger an operator. Thus any operator output could be used as a flow
output. In practice, it has proved convenient to provide distinct flow
output dnd input terminals to aid the user in keeping track of what he is
doing.

When a program is to be drawn with explicit flow control only the
flow input terminals should have the reset option designated. All other
data input terminals should retain their data values. Flow will then be
the sole cause of operator activation, and each operator will be triggered
without any undefined data inputs complicating its activation criteria. In

actual practice explicit flow control is very seldom used. The data input

51

terminals are used with the appropriate options to control operator activa-
tion.

The same basic procedure activation conventions will satisfactorily
handle any combination of explicit and non-explicit flow control. Explicit
flow is treated as just another variable, although the user may choose to
think of a flow path guiding the process activity. A flow line between two
operators already connected by a data line would be redundant. All the
necessary information can be passed down the data line. Some possible
activation options may require that the data line connect to two separate
input term}ﬁals, one a dumy. Figure 4.5 illustrates several examples of
flow and data connection. Flow paths may start and stop as required to
indicate the ordering and priority a user desires in'a procedure description;
Figure 4.6 illustrates this. It also illustrates the confusion which results
from poorly constructed symbols. How are the "switch" outputs and the
"greater" inputs assigned? This figure is not a specific procedure; it is
a collection of connected operators. The output "Y" will be either undefined
or equal to F(A + B)/CB depending on the results of the greater and switch
operatiohs. The readef must decide which way he will assign the terminals
of these two operators.

JOINS AND Y'S

The "Y" connection where many flow paths converge indicates that a flow

input may be defined from any one of a number of sources. The special

operator shown in Figure L.1B must be used to represent a parallel-processing

"flow-join". When two (or more if so drawn) flow variables have accumulated .

52

> 3-23-6581
j oP op
| >
i :
» EITHER INPUT ACTIVATES OP BOTH INPUTS REQUIRED TO ACTIVATE OP
i
!
)
? > A >
3
§ e oP B > opP
| i
2
| — > -v\‘J C >
)
l FLOW
A
bl
)
FLOW ACTIVATES OP C OR D ACTIVATES OP
e U R
’ J oP oP
L S > o=
7
FLOW
FLOW LINE UNNECESSARY SEE —3 EQUIVALENT
9.
A - A P
L I opP B
L-
c _V__,i c >
FLOW
A B OR C TRIGGERS OP EQUIVALENT
e—— INDICATES "RETAIN DATA" OPTION

O~ INDICATES "RESET DATA" OPTION

‘Connection Examples

i

Figure 4.5

o3

v

Ly

e

- .
I
| g IS
+ —
l
7
Z —»{|Z]| F>—¢
A D —
E —

X QO — -

Flow Path Pieces
Figure 4.6

5k

W A —— W @ 5

at the operator inputs, the join operator is executed and provides a defined
flow variable as an output. Flow inputs are always reset to undefined. Flow
must then arrive on all input terminals before the join operator can be
executed again.

In a graphical program using the conventions described, a flow join
as such will rarely be required. The requisite action may be provided for
any operator by making appropriate choices of reset or retain data options
at its input terminals. Furthermore, realizing the flow join action by
means of data terminals provides a somewhat different kind of join action
than has been suggest?d for written languages. The purpose of a join
operation is to insure that when a number of processors are working on a
? problem together, all data necessary has beén generated before the computation
proceeds past the join. The standard method of keeping track of flow forks
and joins as suggested by Conway [2] involves keeping a count of the number
of preliminary tasks still unfinished. As each required action is completed,
the count is decreased. The last action to finish will find a zero count in
the join barrier and will then proceed on past the join. A fork operation
setting ﬁp a new parallel path will of course increment the count in the
appropriate join operation.

It is not at all obvious that the number of parallel paths provided
and the number of data elements required must coincide. Figure 4.7 provides
‘ ‘ an illustration of this fact. There are four parallel paths and only three
required pieces of data. This kind of situation could conceivably occur in
a real time application. To obtain the top data input to FCN 3 in the

3 minimum possible time, we are willing to use two processors running together.

25

—

>

NUMERICAL
CALCULATION
METHOD 1

3-23-6648

NUMERICAL
CALCULATION
METHOD 2

———O— FCN 3 |—>»

FCN

FCN

2

Required-Data Join

Figure 4.7

56

Two different methods (perhaps one iterative, the other recursive) are used
to calculate the answer. Presumably the time required differs depending on
the particular data of the problem. The first answer obtained will be used.
To require that four processes finish before executing FCN 3 is not what we
have in mind; yet to have only three actions finish is not right either.

It would then be possible to have the wrong three actions cause the operation

of FCN 3. Keeping a count is not always satisfactory.

PROCEDURE OFPERATION

‘Some means of matching a computer to the activation conventions Jjust
discussed must be provided since present computers do not operate under the
graphical program conventions. Two solutions to this matching problem are
possible. First, we may change the graphical procedure description into an
equivalent form which may be directly executed by the computer. Chapter VIT
contains a discussion of this translation process (compiling). Second, we
may create a programmed interpreter which will obey the activation conventions
fbr executing a graphical program.

The first step in interpreting a graphical program 1s to initialize
the program properly by setting to undefined all variables in the program

which do not have an externally assigned specific value. Then all the

opergtors in the program are checked and an initial list is made of those

operations which can be performed. From then on the program interpretation

is a cycle of the following three steps:

1. Do all the operations on the list in parallel. For each

operation reset its input variables to undefined for

o7

those inputs so designated. If the list is empty,

program execution terminates.

2. Send the calculated answers on to their receiving
operators and make a new list of these receiving

operators.

o 3, Check each operator on the new list, and retain
only those operations whose inputs indicate that
the operations can actually be done; i.e., have no
undefined inputs except those designated as ignored.
f . Go back to step 1.

Similar methods have been used in logic circuit simulators [30] and in
an executive system [7].
The fundamental activation process is best thought of as a continual

f scanning of all operators in the program to find those which should be

Y 2

activated next. The interpreter does not follow a flow path or paths and

execute a predetermined sequence of operations. The values of the operator

input variables, including flow, determine whether any particular operator
is to be activated. Since flow is only a dummy data variable,.thefe is

nothing but data flow through the process description.

58

CHAPTER V

THE EXPERIMENTAL SYSTEM

To test the various ideas developed about graphical programming an
experimental system has been created for the TX-2 Computer at the M.I.T.
Lincoln Laboratory. At the start of this work the possibility of using the
original SKETCHPAD programs was considered and rejected. Projects involving
coupling a circuit simulator and a program flow-chart maker to SKETCHPAD
had been tfied and proved unsuccessful. SKETCHPAD's internal data structure
and programs are so rigid that it is inconvenient to make a geometrical
entity have non-geometric meaning. Furthermore, a new written language for
creating graphics programs had been developed and made a fresh start

particularly attractive. The CORAL language and data storage system greatly

facilitated the development of the new graphical programming system. CORAL

was created at Lincoln ILaboratory as a direct result of experience gained

v

with SKETCHPAD, éKETCHPAD IIT, and the work of Roberts [24] on three-dimen-
sional fepresentations and hidden line removal. This experience indicated

e - a need for a general-purpose method of handling inter-related data in'a
computer memory and for a useful language to program actions upon the data.
Appendix C contains a brief description of the data structure and language

; features of CORAL._ Since its development CORAL has been used in a translator,
a time-sharing executive, and a text editor as well as in graphics programs.

CORAL gives one the benefit of the best features of both list and table data

29

'

structures.

‘Ina facility for graphical communication about procedures an exotic
drawing capability is not needed. The whole intent is to allow the placement
and connection of symbols in a two-dimensional pictorial language which will
describe some process. We will be concerned more with the connection and
topology of the picture than with its geometrical layout. Consequently, as
implemented, the system has no constraint facilities, no curve capabilities,
and a relatively simple control language. The new system is not intended
for designing mechanical parts or showing three-dimensional drawings of solid
objects with hidden lines removed. One can draw an arbitrary straight line

symbol and assign a meaning to it. Defined symbols may then be used as part

- of a graphical procedure description. After the assignment of appropriate

variable values, the graphically described procedure may be executed.

BASTC GRAPHIC CAPABILITIES

In constructing the new system many SKETCHPAD features were adopted
directly and many omitted. Only straight lines can be drawn since circles
or curves could only make a pictorial program look better and would not add
anythiné fundamental. One draws a line (Jjust as with SKETCHPAD) by position-
ing the light-pen, giving a DRAW éommand, and then moving the light-pen and
attached "rubber band" line to the desired terminal location. There the
line may be terminated and, if desired, another line started by giving
another DRAW command. A symbol can be created in any picture by making a
reference to another picture causing a replica of the reference ficture to

appear in the picture under construction. This replica is treated as a unit

60

4

and may be moved, rotated, ahd deleted as a whole. This recursive sub-
picture capability adopted from SKETCHPAD permits us to define whatever shape
of symbol we like for use in a graphical program.

Geometrical constraints are not included in the new system. Instead,
a "grid feature" makes picture parts lie neatly on a grid of discrete positions.
The size of the grid can be changed as necessary. One can easily draw a very
neat symbol on the "squared paper" which the grid feature provides. Since
the system will only copy and use a replica of the symbol in a pictorial
program, the dynamic action of SKETCHPAD's constraints is not required.

One of SKETCHPAD's limitations is that only one Ppicture can be seen
at a time. The new system allows any number.of pictures to be seen together
on the computer display. In fact, the computer display area may be broken
up into any number of rectangular "viewing windows" each of which may have
any number of pictures assigned. To create a new viewing window one draws
a rectangle at the desired location on the screen and then orders that it
be made into a window. Thereafter, until deleted, this window acts as a
boundary for whatever pictures are "placed behind it". The entire scope
face is considered as merely one of many possible windows. The viewing
transformations which control how a picture is positioned under a window
are separate for each picture-to-window assignment. Thus it is possible to
have an overall view of a picture in one window and a zoomed-in closeup of
a portion of that picture in another window.

The presence of a variety of views on the display face introduces a
new complexity. If we say DRAW to the system when there are two windows

on the display — each showing two pictures — in which picture and with which

61

Y

transformation do we wish to draw? It is necessary to designate which picture
and transformation should be used. In actual practice explicit boundaries

for the pictures are rarely needed since usually only the total scope window
is used. Pictures in it are separated by putting them in different corners.

A dictionary facility is provided which makes it possible to name
pictures and windcws; the name of a picture is used when calling up a replica
symbol for use in another picture. In addition, a2 small number of system
controls work through typed inputs and the dictionary facility. There is,

for instance, a typed command which says "Delete the entity named".

SYSTEM CONTRCL LANGUAGE

The control language is the medium via which a user communicates his
commands to the computer. Such a language should be as easy as possible to
use. The discussion here will be confined to a general description of the
control features and their method of implementation. Appendix A contains
the details of the experimental system's controls.

One of the difficulties with SKETCHPAD is the fact that its control
functions are selected by a large number of buttons. This forces a user to
look away from the displayed picture to find the appropriate button he wishes
to push. The new system uses "light buttons" on the scope face itself to
replace a large number of function buttons which must be pushed. There are
only two physical buttons to push, and these are foot-operated. Thus the
user need put down the light-pen only when he wishes to use‘the typewriter
keyboard. Ih all other cases the light-pen and foot pedals are used to

control what action will be taken. Instead of pressing a DRAW button, a user

62

N

.y

of the new system points to a DRAW light button and presses one pedal. He
thus places the system into a draw mode and then he can draw any number of
lines by moving the light-pen and pressing the pedal. The pedal acts as a
universal button, while the light buttons select what label and function the
universal pedal shall have. The second pedal destroys the label assigned to
the first pedal and requires another choice of function to be made,

It is very useful to think of the control language inputs causing
transitions between system states [9]. Each state causes an associated
action to be performed whenever the system is in that state. Some states are
unstable and give way to another state after their actions have been done
only once; other states are stable and have repetitive actions. As an
illustration, let us consider the state changes involved in drawing a line.
When the DRAW light button is selected, the system is set to a waiting state
with a null action. Pen tracking is required before a line can be drawn.
Consequently, the initiation of tracking causes a transition to another
.state, again with a null action. A push of the action pedal now causes a
state change to an unstable one. The action of creating new end points and
a line is done‘only once before the unstable state changes to a state which
moves the new line as the light-pen is moved. The action for this state is
done repeatedly until the termination of tracking returns the system to the
previous waiting state.

It took a long time to realize that some kind of structure, no matter
how simple, is required for the system's controller. The controller has a
state table which describes the transitions that may be caused by the

inputs of the control language. When this kind of control was adopted the

63

gystem factored neatly into the state controller, a large number of action
subroutines, and an input collector which provides inputs to the controller
from the pedals, light-pen, and keyboard. Until this simple order was imposed
the system controls were a patched jumble of special features. With a state
transition controller it is very easy to specify that a certain sequence of
events is required before a series of actions is performed. Experience has

shown that the control language should be treated by means of some formalized

scheme of appropriate complexity.

SPECIAL FEATURES

Not unexpectedly, a number of special capabilities had to be provided
in the experimental system. One of these (the declaration of symbol terminals
and data types) has already been mentioned. After a master picture for a new
symbol has been drawn the input and output terminals for that symbol must be
designated. This 1s accomplished by a set of declaration statements within
the control language. If the symbol is to have a primitive meaning the data
type for each terminal is chosen (by means of the light-pen) from a list of
allowed data types. If the new symbol is to have a graphically defined
meaning then the data types for the new symbol's terminals_aré automatically
determined when the correspondence to terminals in the definition picture
is established. Thus a new symbol which represents a graphical definition
of "average" will automatically have numerical terminals since its definition
picture contains the numerical operations of add and divide.

Becaﬁse the picture of a procedure represents something non-geometrical

there are some operations which would be legitimate from an exclusively

64

T N

graphical standpoint which afe really incorrect. The connection of dissimilar
kinds of terminals is an example which has already been mentioned. The
system will not permit certain incorrect actions or actions for which
insufficient information is available. For instance, suppose we try to
connect a BOOLEAN terminal to an INTEGER terminal. We position the light-pen
over the first terminal and give a DRAW command. A line is created and
stretches between the first terminal and the pen position. When the pen is
positioned over the second terminal and the stop drawing signal (pen flick

to terminate tracking) is given, the line will be deleted and for a short
time the word "ERROR" will appear at the location of the second terminal.

A user is also prevented from asking for a symbol replica without indicating
the name of the desired symbol. The positive response of "ERROR" immediately
reminds one that something was forgotten. The system also responds to errors
in assigning terminal types and variable values.

A positive response provides an indication that the system has complied
with a correct command. If one connects two terminals and the terminal types
are compatible, the comnection will be made, and a reassuring "oK" wiil
appear mdmentarily. Figure 5.1 shows how this response takes place. The
top two.pictures show a correct connection being drawn between two numerical
terminals. The next two pictures show how a connection is rejected between
two incompatible terminals. The fifth picture shows how a debugging feature
can show that the two terminals in question are BOOLEAN-OUTFUT (Bx) and
INTEGER-INPUT (I —) and hence incompatible. This and other debﬁgging
features will be covered later. It is quite clear that a rapid response to

errors and reinforcing response to correct actions is valuable. A more

65

5.1

66

. Control Responses
Figure

¥
11

L - > e A T A S
A X P S S - E) - -

detailed diagnostic repiy fd incorrect actions is desirable and should be
easy to provide when time permits.

Terminal déta types play an important role in the limited positional
connection capability provided within the system. Often it is awkward to
draw explicit connecting lines betﬁeen symbol terminals. It would be much
more convenient to place appropriate symbol terminals near each other by
correctly positioning their symbols, and then to let the system create the
explicit comnections between terminals. Figure 5.2 illustrates a typical
case. All of the connections in the array of symbols were made automatically
by the machine. A symbol being moved on the display surface méy momentarily
have its terminals placed into a positional connection mode. At that time
if any compatible terminal on another symbol is within a certain distance
of a terminal of the moving symbol, the terminals will be explicitly
connected. The assignment of data types to terminals makes this kind of
automatic connection reasonable since only compatible terminals will be
connected and not every possible pair of terminals. Because of data types
the allowable distance separating terminals may be fairly large and yet the
automatic connection feature will still work well with only a rare undesired
connection occurring.

Variable values are entered by keyboard and appear on the scope. The
user may move the text of the value with the light-pen. When pen tracking
ig terminated over a variable, it is assigned the value being moved around.
The value text disappears and the system responds with a momentary "oK".

An "ERROR" response occurs for an incorrect assignment.

The final special feature of the experimental system permits one to

67

Basic Symbol

—~—

Connected Symbols

Automatically Connected Symbols

5.2

Figure

68

g

choose the input terminal options for each symbol. All input terminals,
except flow input terminals, are created with the data retaining option when
a symbol replica is called up for use. TFlow inputs are created with the

data resetting option. There are declaration commands in the control language
which allow a user to point to an input terminal and change it to whatever

option he desires.

USING A PICTURE AS A PROGRAM

We will now shift attention away from the purely graphic aspects of
the experimental~system and consider using a picture as a program. The graphic
elements of the system now must have a dual identity. A point is more than
just a geometrical entity since it may represent a variable which has a value.
Thus the representation of a point must contain some indication of the value
assigned to the variable as well as the position of the point. Similarly,
a complex symbol used in a picture must provide a semantic referenée to that
symbols meaning as well as a geometric reference for defining the symbol's
shape. The line element serves as a connector both of points in geometric
éontexts and of variables in program contexts.

The internal representation of a pictorially described program is

 uged in two principal ways:

1. As data for a display procedure written in machine-code. The

resulting output is the picture presented on the display face.

2. As a process description which will guide and control a pro-
grammed interpreter. The action which results from this guiding

of an interpreter will act on other, quite disjoint, data.

The internal data structure must be suitable for both of its uses.

69

A4 -

Using the picture program's internal representation as instructions
for an interpreter is not a difficult task. The interpreter must know how to
find the program information in the data structure just as the display program

must know how to find display information. Beyond that, the interpreter must

determine that an operator should be activated, obtain the appropriate data

values from the data structure, perform the operation, and put the answers
back into the data structure. The mixing of pictorial and program information
does not matter to either the interpreter or drawing system. Since picture
and program are combiﬁed in one structure whatever is done to the picture

is automatically done to the program. Deleting a line removes the indicated
program connection as well. The picture is a visual model used for construc-
ting and changing the pfogram.

Sometimes picture and program concepts merge. For example, we would
normally think of displaying a spot at a location specified by the graphic
coordinates of a point. For display purposes the value of the variable
need never be considered. It may be'convenient, however, to substitute a
text display of the variable's value for the spot. The graphic coordinates
still determine the location of the point-variable's display be it text or

spot. Similarly, the syntactic properties (data type) may be shown as text.

"In this way information about the variable represented by the point can

be presented to the user. SKETCHPAD had a rather rigid separation of
graphical and non-graphical concepts which made it unsuitable for this kind

of use.

70

DEBUGGING
‘Mistakes in graphical as in written programming are likely to occur.
The system provides some help in preventing obvious errors but cannot detect

a logical error in a procedure. However, Jjust having a two-dimensional

e

version of a procedure spread out for examination has proved very convenient.
When a graphical program on the screen is operating thé elements which are
actively being performed blink. It is most instructive to watch the activity
progress through a program along many parallel paths. One can display a
graphical sub-program as well as higher level programs which use it. When
the activity in the upper program réaches the sub-program symbol it will

flash. The sub-program will then be activated, and its symbols will flash

8 5

showing the path of activity. Observation of activity in programs may be

conducted to whatever depth of definition layering can be seen on the display.

Program activity may be interrupted and various actions taken before
resuming program execution. It is possible to examine intermediate results,
to agsign new values to variables, and even to change the program structure
within reasonable limits. Execution of the graphical progfam may then be
resumed and will continue, using whatever changes were made. To examine the
variables and other items of interest in a graphical program, a special set
of controls has been inciuded in the experimental system.

In one of the special debugging modes it is possible to see on the
display the values of any or all of the visible variables. As mentioned
previously the geometrical point display is replaced with text which shows
the value of the variable, Figure 1.6 in the introductory example of

Chapter I showed this feature in operation. In another mode it is similarly

TL

possible to see the syntactic properties (data type and input or output
L terminal designation) of any point on the display. In yet another mode,

the name of the master picture of any complex symbol may be determined as

well as the name of the picture which defines the meaning of the symbol.

Thege two features are shown in the top illustrations of Figure 5.3. The

ST —

bottom two views in that figure show how the corresponding points of symbol
and definition picture may be matched. If a symbol and the picture defining
T its meaning are both visible on the display, the computer can be ordered to
show a dashed line between corresponding points. The dashed line in this
case does not represent flow. It is possible to analyze an unknown program
5 with the examination capabilities just described. The names of all symbols
and their defining pictures may be obtained, and what each terminal on a
symbol means may be found by comparison to the definition picture.

| One can run an -individual definition picture to check its operation.
Input data values may be assigned easily and output answers may be obtained

and examined visually. Watching activity progress through a program is very

useful in verifying correct operation. Thus a user may be cautious and
check out progrem pieces as they are defined, or he may be bold and only
look f§r errors when they occur.

It is not necessary to define a meaning for an operator symbol before
that symbol can be used to draw a procedure. Thus one can program from
the "top down". An operator which is to perform some function can be drawn
and used while leaving the problem of specifying its meaning to a later

convenient time.

T2

! |
R

Symbol Definition Names Terminal Syntactic Properties

Corresponding Points On A Symbol And TIts Definition

Debugging Features
Figure 5.3

3

|

Since the graphical program is laid out in two-dimensions and since

‘data terminals are readily available, it seems reasonable to provide "data

probes" which may be attached to data terminals of interest. These probes
provide a means of examining variable values. When a user is checking over
é program he may attach a data probe much as he would attach an oscilloscope
lead to a circuit. No special effort is required to provide this kind of
attachable data probe since the user need only call up a suitable primitive
operation symbol and graphically connect it to whatever data terminai he
chooses. The added operation then becomes an integral part of the program.
The information necessary to trigger the probe operator can be passed down
the data lead and no flow connection is needed. The standard system prim-
itives of SEE and TYPE have been used for just this purpose. Other operators
which plot data values can be defined as necessary.”

The first picture of Figure 5.l shows a program for finding the
square root of a number. In the second picture a data probe has been added
to examine the value of a variable. The third picture shows a value obtained
sometime during program operation. A different attached operator is shown
in the fourth picture. This operator is a break point, and when activated

it interrupts the operation of the interpreter thus allowing one to examine

" the program with the debugging features already covered.

GENERAL REMARKS

It is unreasonable to expect that graphical programming will be really

* Data probes were suggested by T. G. Stockham, Jr. [27].

e

—

< d=kun T

Basic Program

Probe Operating

Data Probe And Trap Operators
Figure 5.4

>

Probe Attached

Trap Operator Attached

practical until many man-years of effort are expended. This experimental
system has only scratched the surface. The indications are, however, that
graphical programming should be worthwhile. The details of the experimental
system are less important than some general results which have become clear.
These comments are applicable to interactive graphical systems of any kind.
First, the importance of a close mix of geometric and non-geometric
properties has been shown. Whenever picture parts are to havé meanings other
than purely geometric ones, the abstractions which the picture parts rep-
resent may in some degree affect the graphic behavior of the parts. Second,
the importance of a good written programming language for creating the system
programs cannot be overemphasized. Without CORAL the task of creating the
system would have been>immeasurably harder. Third, some formalized scheme
of control is a great asset. The experimental system uses a kind of finite
state machine as its simple control scheme. With the control form fixed,
thé system factored into managable pieces; without any formalized control

scheme, the controls and system were chaotic.

76

CHAPTER VI

A TWO-DIMENSIONAL LANGUAGE SCHEME

Before we apply the term "Graphical Programming Language" to pictorial
procedures, let us examine what we mean by a programming language. ALGOL
and LISP may be classified as two specific members of a class known as
"Written Programming lLanguages". Every language in this class will share
some common features with other members and will differ in some way. Written
programming languages usually include the basic notion of executing state-
menfs in‘sequential order and share the syntactic restrictions of a one-
dimensional source string. The pictorial programs described in this report
belong to a different class, "Graphical Programming Languages". Two graphical
programming languages might have radically different symbols with different
meanings and yet share a common two-dimensional form, basic syntax rules,
and operating conventions.

The experimental system just described provides a graphical programming
language scheme or framework which can host a variety of specific languages,
each of which will have certain definite symbols and operations. The
experimental system allows any symbol set the user creates and also may have
its primitive operations changed. The examples presented so far have
involved numerical calculations. The next section shows how different non-

numerical operations may be fitted into the two-dimensional language scheme.

T

GRAPHICAL ASSOCIATIVE PROGRAMMING LANGUAGE

The basic graphical prbgramming scheme was combined with a special set
of primitive operations which were developed to do associative processing as
part of another‘project. The result is a graphical means of connecting
together associative operations which create, erase, and search for pieces
of information in a data base. Let us first consider the associative primi-
tives and written associative language developed by Feldman [6].

Feldman was concerned with how to make use of an associative memory -
system should a large and practical one be developed. He created a written
language for programming actions in an associative memory. He assumes that
the information of interest can bebdivided into objects, attributes, values,
and associations. An association is always a triplet of the form "ATTRIBUTE
of OBJECT is VALUE". Statements in the associative programming language are

made up of command words and associations. For example, the statement

SET Brother(Mary) = John
will cause the relation that Mary's brother is John to be entered into the
associative memory. This information may be retrieved by asking a number
of different questions. The statement

TYPE Brother(Mary) = X
will search memory and type out all of Mary's brothers, including John. The
written programming language allows dummy variables to be used in a triplet
as in the example directly above. The statement

ERASE Brother(X) = Y

will destroy all information in the associative memory that uses brother as

an attribute.

78

Thg written associative language contains other control words which
allow complex statements to be constructed. For example,
FOR Cousins(Mary) = X WHERE Sex(X) = Male TYPE Home Address(X) = Y;

will produce the home addresses of all of Mary's male cousins if that infor-
mation is contained in the data base. In an associative memory which contains
information about several generations of‘a large family we may insert the
relationship "UNCLE" which is not now directly included as follows:

FOR Father(X) = Y WHERE Father(Y) = Z AND Father(W) = Z AND

Sex(W) = Male SET Uncle(X) = W; FOR Father(X) = Y AND
Uncle(X) = Y ERASE Uncle(X) = Y;

To create a working system which could use this language on a reasonably
large data base, a simulated associative memory system was developed. Hash-
coding provides quick entry to the data base and list features are included
to make answering reverse questions possible. Primitive operations were
constructed as machine code routines which search for, set, and erase the
data triplets in the simulated associative memory. A compiler takes state-
ments in the written associative programming language and creates a program
of calls on the primitive operations. Executing this program then performs
the desired actions in the assoclative memory.

To unite the two systems (graphic and associative) was easy; it took
a good summer assistant less than two months. This includes the time required
to learn the TX-2 Computer, to learn about both the graphic and associative
systems, and to produce a working merged system. Symbols may be drawn and
défined to mean the special primitives. The standard graphic activation

conventions work correctly to control the operation of the connected

9

associative operators. Figure 6.1 inserts the relationship UNCLE into the
associative memory and is the graphical equivalent of the earlier written
example. The variables represented by the data connections are not numerical,
52 but instead are sets of named attributes, objects, and values.

Tt is not immediately apparent that the graphical program format is

kf any better or clearer than the written one. One of the purposes in merging
the two systems was to permit a side-by-side evaluation of the two language

forms. 1In the figure the set and erase operators are indicated with 1ettérs

while the search operations are unlabelled. Input terminals which have no
data value shown correspond to the dummy variables of the written form.
After a search in the memory, each unlabelled operator's output variables

are defined by the set of associations in the memory which match the specified

inputs. The first operator has inputs vertically corresponding to Father(X) = Y.

Tts outputs are derived from all associations containing Father as an attribute.

The middle terminals on the second and third operators represent people who

have a common father represented by the connecting bottom line. The fourth
operator removes females and its output is used with the one representing the

original niece or nephew to insert explicit associations about uncles. The

last two operators remove an uncle relationship whenever the two people are

really father and child.

GRAPHTICAL LANGUAGE SCHEME
The relevant results of the preceding discussion are more than the
sPécific details of one particular graphically formatted associative pro-

gramming language. The example is intended to illustrate that a basic

80

1

Graphical Associative Programming Ianguage
Figure 6
81

framework for two-dimensional procedure-oriented languages has been developed.
Throughout the previous discussions of activation conventions and symbol
connections, the actual primitive operations used were irrelevant. The
scheme of a procedure description is concerned with the operation of some
arbitrary actions and how data is passed between them. The framework of
symbols, symbol connections, and activation conventions is quite independent
of the meanings of the individual parts. This framework provides the
formalism by which complex meanings are created from the simpler meanings

of the component parts. The conventions chosen and presented here are not
the only ones possible just as the usual sequential conventions are not the
only ones possible for written languages. They are, however, a simple and
useful set which may be used for many different tasks.

Languages created within the experimental graphical programming system
will all use explicit connection of symbols. The symbols may be arbitrarily
drawn, but they must have terminals for connection to other symbols. The
particular syntax properties chosen for any terminal must conform to the
basic syntax rules allowed. In creating a specific language the primitive
operations for a particular application must be chosen and placed into the
general language framework.

Providing primitive actions for the experimental system has been a
slow process of adding a new one every now and then. Much of the early
experimentation was done with boolean operations. These simple operators
‘allowed full concentration on the graphical procedure frame of symbols and
conventions. When operation of the basic graphic and interpretive features

was satisfactory, more attention was given to a richer set of primitive

82

operations. To add a new primitive one must declare the written name by
which it i1s to be known in the system, and provide a subroutine to do the
required action. To use a new primitive one must draw a symbol for 1it.

Adding a new primitive operation is not to be confused with providing
a new symbol with a semantic definition graphically constructed out of already
defined parts. Adding a new primitive requires action by someone relatively
expert in the inner working of the graphical programming system. He must
place a new subroutine in the system's permanent records. On the other
hand, creating a new symbol and giving it a graphically defined meaning can
be done on-line by any user.

Appendix B contains a description of the primitive operations that
have been inserted into the experimental system at the time of this WTiting}
The list is by no meahs complete for it appears likely that the addition of
primitives may go on indefinitely. In one sense the only primitives needed
ére boolean since with them it is theoretically possible to builld up on-line
whatever else might be desired. Practical efficiency considerations make
many other primitive operations necessary if any useful applications of

graphical programming are to be made.

LANGUAGE SCHEME APPLICATIONS

There are three direct characteristics of an interactive graphical
programming system which indicate potential applications: the two-dimensional
nature of the pictorial programming language, the ease with which parallel
processing may be specified, and the fact that an interactive graphical system

is available.

83

Many simulation probléms fit easily into a two-dimensional source
language. Rather than trying to describe a collection of filter elements,
amplifiers, and modulators with a written language, it makes good sense to
draw a schematic of the desired arrangement. When a picture describing the
desired connection of active elements is complete the picture may be-
activated and the operation of the network simulated. Inserting already
existing simulation primitives into a graphical programming framework is
particularly attractive because little effort‘is involved. Thus we can
envision a graphically programmed form of a language like BLODI [12]. The
inclusion of an existing set of TX-2 primitives for a BLODI-like language
is planned for the near future.

The kind of application just desecribed may also make use of parallel
processing. If the source picture describing the problem network so indicates,
some of the simulation operations may be performed together. Other applica-
tions involving parallel processes should prove suited to a gréphical
description. For exaﬁple, we might use a graphical format for programming
the actions of a remotely controlled vehicle. Assume that we must specify
how an automatic forklift cart is to behave in an'automated warehouse. The
cart has a number of actions which it can perform simultaneously; i.e., move,
turn, raise forklift, tilt back. The two-dimensional source language could
be used for specifying that a 90 degree turn and forklift lowering should be
accomplished together. After both are completed the cart should move forward
and engage a pallet. A simultaneous backing, 1lifting, and tilting can then
be accomplished. Any procedure which involves parallel operations is a

candidate for a graphical description.

8l

On-line graphical proéramming suggests aﬁother broad area of
application. Since an interactive drawing system is provided, let us use
it to draw pictﬁres representing data as well as program. In the‘previous
example of the forklift cart, besides drawing a program of operations for
the cart to perform, it might be useful to have a map of the warehouse
available on the computer display. The graphical symbol representing a move
operation could then be connected to graphical data (the warehouse map) to
indicate where the cart should move. A great deal of care was taken in
the previous chapters to separate pictures into those representing procedure
and those to be used as data. However, a graphical program may work on data
of any sort.

Some experience with combinations of pictorial data and pictorial
procedures has been obltained. The experimental system contains primitives
which act on graphic data. It is possible to draw a picture to be used as
data, and to draw another picture which is a program specifying how the data
picture shall change. Moving symbols and walking stick figures, for example,
have been programmed. When using the graphical programming éystem with
graphic.data we get many of the graphic primitives free. The same routines
used by the system to make and move program pictures may be called by the
interpreter to act on data pictures. Program and data can even e combined
'into the same picture; a program when executed may change its own pictorial

description.

85

CHAPTER VII

CONSIDERATIONS IN COMPILING MACHINE CODE

Past experience with computers has shown that interpretive operation
of a program may be quite inefficient. To avoid this difficulty we trans-
late the source language statements into an equivalent sequence of machine
code instructions which the computer can execute directly. Can and should
this be done for a graphical source language of the kind under discussion?

Let us first consider the problem of creating machine code from a
graphical program which has a single explicit flow path designated to control
how the procedure operates. ALl of the standard compiler considerations
apply to this case. The graphical program is analogous to a written program
and a compiler for this kind of graphical program can be constructed without
~difficulty. Compiling code for a single processor machine from a sequentially
operating program description is a well understood task.

A graphical program, however, may represent a procedure in which a
number §f parts could be operating in parallel. This is one of the appealing
characteristics of the two-dimensional language form. The difficulties in
compiling code to improve the efficiency of a graphical program arise from
varallelism in the program and in the computer. Depending on the particulaf
circumstances, it may be desirable to keep the parallel paths in the machine
code or it maj be desirable to remove some or all parallelism and make the

procedure operate sequentially.

86

The actions taken by the compiler will depend in part on the number of
processors expected to be available at run-time. The code resulting from com-
piling some parallel graphical program should be different for the three cases
where one, two, or twenty processors were predicted available for object code
execution. Parallelism with only one processor available is useless, whereas
with twenty processors available a high degree of parallelism is valuable. Mul-
tiple>processors are a factor which compilers have not yet had to face.

A parallel program in machine code form may be expected to fit a sequen-
tial pattern of operation. At a machine instruction level computers almost
universally use sequential control. Program instructions are executed from
consecutive memory locations unless special jump commands order otherwise. The
object code will have a number of parallel segments each consisting of a
normal sequential machine code program. How much machine code each-segment
should confain is a matter of efficiency and depends on the particular
circumstances. If the actions involved in assigning processors are efficiently
handled Ey hardware the segments could be as short as one command. If
processor assignment is accomplished by a programmed supervisor then the
parallel‘éegments must be long enough so that the supervisory overhead time
is a reasonably small portion of the total running time.

Other factors may alsorindirectly affect the length and number of
parallel program segments. If a large number of processors are to be active
simultaneously, their program segments must reside in the computer's high-
speed storage. The size of this storage is a practical limitation on the

size and number of parallel segments which can reasonably be expected to

87

operate together. A reduction in the number of parallel segments in a
program could well be accompanied by an increase in segment length since

the same total amount of processing must be done. Unfortunately, longer
segments take more storage, yilelding no obvious net gain. Unneeded parts of
a segment may be kept in bulk storage and brought into core as needed. In
this way memory swapping efficiencies could become ?elevant to the decisions

required during compilation.

SPECIAL CASES

There is one action which should always be taken to improve the
efficiehcy of a graphical program. Those portions of a graphical program
which will operate seéuentially should be consolidated and compiled into
machine code segments. It should be clear that finding sequential portions
of a graphical program is not a difficult task. Examining the inferconnecting
data lines between operators for branches and checking the input data
activation conventions present at each operator will determine those opera-
tions which have a single guaranteed successor. Once the sequential portions
of a program have been identified there is no difficulty in compiling the
code for those portions. We now assume that this step has been accomplished
and that the sequential portions have each been redrawn as a single operator
in the graphical program.

There are two possible reasons why the remaining operators were not
consolidated. First, the activation of an operator may be followed by the ‘
activation df more than one succeeding operator; i.e., a new parallel path

is needed; or second, an operator's activation may not necessarily follow

88

from the activation of an earlier operator; i.e., parallel paths join
together.

Let us first assume that more processors than will ever be required
are available at run-time. The compiled code should retain all of the
parallelism present in the graphical program. Compiling machine code for
this case is a direct task. Each operation can be translated into a segment
of seqﬁential machine code instructions. A fork operation starting new
parallel paths and activating new processors must be placed after each piece
of code derived from an operator with a branching output. Machine code which
performs the join and wait operation must be placed in front of the code for
operétors which have this inpﬁf characteristic. The machine code proéram is
a direct mapping of the pictorial program. There are no great difficulties
inherent in doing this kind of compilation.

Let us next consider the other extreme of compiling machine code when
it is known that only one processor will be available. The fully-parallel
machine code just discussed can be used with only one processor, provided
the supervisor is able to keep track of the parallelism. The supervisor
must be able to simulate the operation of many parallel processors with only
one. When simulating parallelism all the operations which would start at a
particular time are done in any order and their results and completion times.
stored. Then the operations which would start at the next largest time are
done, and so on. Alternatively, the parallelism may be removed by the com-
piler and the computation converted from a parallel into a sequential one.
The advantage of converting to a sequential process is that no supervisory

actions are required when a single processor follows a single explicit flow

89

path through the program. Unfortunately, it i1s not always possible to
remove the parallelism from a program before it is run, and consequently
the parallelism must sometimes be simulated at run-time.

As a first example refer to Figure T7.l, the same figure that was used
previously in discussing Join operations. Let us assume, as before, that
whether method one or method two for the numerical célculation finishes first
varies and depends on the particular problem data. Furthermore, let us
assume that there is some significant difference between the two answers
'provided. Without actually doing both operations and seeing how long they
take (or doing something equivalent), it is not possible to know which resul-
ting'daté value to use with FCN 3. Thus a machine with a single processor
would have to simulate the parallelism and do both operations to obtaiﬁ
resulté equivalent to those obtainable with a multi-processor. The duration
time of operator execution is crucial here. The fact that the execution
durations are not determined until run-time makes compile-time decisions
impossible.

Even when the duration of operations is known in advance, there are
situations which will be difficult to compile. In Figure 7.2 two independent
loops are feeding a third operator. It should be clear that 0P 3 will
operate every four time intervals. However, sometimes OP 1 will provide two
data outputs before OP 3 is again activated. One of the OP 1 outputs will be
lost. It would take a very sophisticated compiler to handle this situation

without resorting to simulation of the parallelism.

. 90

NUMERICAL 3-23-6648

CALCULATION |
METHOD |
NUMERICAL
L— CALCULATION
METHOD 2
————O0— FCN 3 f——>
o .
e Ot
¢ FCN |
A
FCN 2

Parallel Operations

Figure 7.1

91

3-23-6657
OP | .
T =3
- —0
- o | OP3 ——
oP 2 |
T:=4

Independent Operations

Figure T.2

92

These two examples have been presented to show that the problem of
removing parallelism is not a trivial one. However, we may expect that a
large portion of the programs actually drawn will not involve such difficult
cases. It is easy to see that a program consisting of a tree of operator
connections with abpropriate wait restrictions required for each operator's
activation may easily be converted into a sequentially operating equivalent
progrém. We hope that many of the programs we might wish to compile would
fall into this category.

Let us consider the case where machine code has been created for a
certain number of processors, but at run-time a smaller number of processors
than ilanned is available. Operation of the program is unaffected until such
time as only one unassigned processor remains available to the supervisor.
Then 1f program operation is to continue, the supervisor must use that one
remaining processor to simulate the action of the many missing processors.
Changing over from the fairly simple actions of processor assignment to a
full simulation of a parallel program is a large shift in supervisor operation.
Machine code is usually compiled for a fixed hardware configuration, and

changing the available hardware should require recompilation.

SUMMARY

To solve some problem, a man has created a procedure description in a
graphical format. This procedure description has as one of its features a
natural inclusion of parallelism. The program is to be executed for the user
by a computer with certain capabilities. It is possible to take a brute

force approach and interpret the graphical program directly on the available

93

machine. Tt may be better, however, to examine the program before it is

run, and to modify it or change its form, thus providing for more efficient
execution later on. How to modify the program before running it depends to

a large extent on how it will be run. Therefore, the program which performs
any efficiency improving modifications (the compiler) certainly depends on
the means of controlling the program's operation (the supervisor or inter-
pretef). Confusion may exist when the term "Compiling" is used out of its
well-defined context, i.e., sequential program descfiption to seguential code.
Many new options occur when a parallel program is to be used on a parallel
processing computer. Decisions about the alternative possibilities must be

made before the source language is converted into object code.

9k

CHAPTER VIIT

CONCLUSIONS AND RECOMMENDATIONS

The results of the work reported here are a pictorial language form

for spécifying procedures and a working experimental system for graphical

programming. Using the system, a user may draw a picture representing a
procedure and then have the computer execute it. The major conclusions to
be drawn from these results are as follows:

1. A pictorial program is a natural way of expressing
parallel processes. The two-dimensional nature of
the language helps in visualizing many things happen-

ing at once.

2. The ease of debugging programs, particularly parallel
ones, will be enhanced by a pictorial language form.
Being able to attach data probes and to see a program
run gives one a grasp of detail that is hard to obtain

in any other way.

3. A program's execution need not be controlled by the

usual explicit sequential flow conventions. The

movement of data through a program may determine its

operation. A data controlled convention corresponds

closely to our intuitive ideas of how a graphical pro-
gram should operate and also allows parallel programming

without explicit flow designations.

L, When a data controlled convention is used to activate a

program, explicit flow may be treated as a new but

95

standard kind of variable. Flow may be introduced
into a program as a dummy variable whenever special

ordering considerations require it.

5. Choosing a general form for symbols, connection
methods, and activation conventions does not deter-
mine a single pictorial language; it specifies a
class of languages. A particular language is created
by defining within the general rules a specific
symbol set, specific connection rules, and specific

meanings for each symbol.

Finally, the graphic properties of picture parts may be nodified by the
particular ndn-pictorial entities they represent. This last conclusion has
great‘implicationshfor the future. We have seen in the experimental systém
how non-pictorial properties modify the connection of points and the display
of points and lines (connecting to a flow terminal makes a line dashed). In a
circuit context, a node might display a voltage value, and a resistor symbol
might be replaced with a current or dissipated power indication. Future graphic
systems must allow a user to make statements about the non-graphic‘information
which his picture represents. The experimental system requires special control
commands for choosing the "retain data" or "reset data" options at input
terminals. It also includes special programs to make each terminal's display
match this non-pictorial information. Since people will use pictures for many
different purposes, future control languages must be especially flexible and
easily extended. The programmed actions available within a graphics system nust
be easily extendable too.

This research supports the stated views of others [26] that control

language inputs to a graphics system should be processed by some formal scheme.

Having a known form for the control language and its processor makes extending
the language a well-defined task. The experimental system has also shown that
immediate system responses to correct as well as incorrect commands are very

useful and should be included in future systems.

GRAPHICAL PROGRAMMING DRAWBACKS
There are a number of reasons why it might not be convenient to describe
procedures graphically to a computer. One limitation is imposed by the
physical size of a computer display screen. On even the largest of displays
only a.relafively small amount of program can be manipulated at one time. If
really large programs are involved, it will be impossible to fit all of the
program onto the display and may be inconvenient to break up the program into
manageably-sized pieces. When a program must be broken into pieces the con-
nections between a visible portion and other hidden portions cannot be explicitly
handled. ILabels will be needed, leading back to written language features
which have so far beén avoided.
The introduction of names and labels is a very desirable thing. We
have used written languages for so long that we are accustomed to their require-
~ments. So far, the distinctions between written and graphic programs have been
emphasized. A combination of written and graphic forms will permit the best
features of both tobbe used. DPast experience with large blueprints of
schematic wiring diagrams certainly indicates that we often like to use written
and picture notations together.
Farlier it was stated that the parallel input capability of our eyes

made a non-sequential form of language (pictures) useful. There is a limit

97

to how much information we can accept at once this way, and this limit may be
related to how we use labels. When looking at a picture we are aware of an
area only a few inches on a side. Within that area, explicit connections by
lines are useful. When connections must extend beyond the boundary of our
awareness, the‘parallel input of the details of the area must be broken and
we then look at another area. Thus we observe a number of areas in sequence.
Labels are a useful method of connecting between sequentially separated entities.
Consequently, we would expect to use them for comnections to some distant
part of a drawing in preference to a long explicit connection which must be
followed and traced out. Even if size restrictions of computer displays were
removed, we wéuld still wish to include labels as a method of conﬁection.

The experimental system as presently implemented leaves much to be
desired from an efficiency standpoint. Such considerations were relegated to‘
a very minor role during the system's development. Operation of the inter-
preter is slow, and it consumes much overhead time in relation to short
primitive operations. A pictorial program occupies a large amount of core
storage in comparison with an equivalent machine code pfogram. One must pay
a price for the extra informetion involved in a picture. Similarly, if a
- blinking picture which shows how the graphical procedure is being activated
is desired, the interpreter must steal the time necessary to do this from the
program proper. The experimental system has accomplished its purpose of
demonstrating some of the features of graphical programming, even if it does
so slowly. However, the system is a long way from providing a realistic and
practical capability for general-purpose graphical programming. Its efficiency

is satisfactory only in special situations with large primitive operations.

98

Written notations have been developed for many purposes, and common
usage has made these notations very familiar to us. When a useful written
notation is available, we probably will not wish to use a graphical one instead.
The earlier comparison between written and graphical notations for arithmetic
is an example. Graphical languages for programming will find most use where

a good written notation is not available or where the problem is not well-
suited for a written aescription. The development of a graphical programming
capability must not be considered in the light of replacing written programming.
Rather we must extend the options available to a programmer so that he may use

whichever method is most convenient for a particular application.

RECOMMENDATIONS FOR FURTHER WORK

In the general field of graphical communication with computers much
remains to be done. Better control languages can be developed for interactive
systems. New data structures for representing pictures and what they mean

are needed. Written programming languages for making graphical system programs
can be impréved, and new hardware devices for graphics use can be devised. On -
the theoretical front, a solid foundation for picture syntax needs to be
developed. Many picture parsing and pattern recognition problems remain to

be solved. Computer graphics efforts everywhere will benefit from a solution
to these problems, particularly in areas where input from an already existing
picture is desired.

The initial exploratory work reported here may be continued on any
number of fronts. Specific applications of the basic graphic programmiﬁg

capability developed may be pursued, and other conventions and graphic programming

99

notations for classes of languages may be explored. Combined written and
graphical notations and systems which use them need to be developed. Compared
to the amount of effort invested in written programming languages, virtually
nothing has been done yet about graphical programming. It follows, therefore,
that almost everything still remains to be done.

One of the claims made for a graphical program is that it is & natural
way to express parallel processes. This claim needs to be tested on a computer
which has many processors available. The TX-2 on which the experimental system
runs has only a single processor and so must simulate the parallelism in a
graphical program. All of the considerations of efficiency and compiling in
Chapfer VII need further development based on‘the actual requirements imposed
by a specific multiple processor computer. Only when this is done will we
obtain the ultimate verification of a system which actually works.

The graphical debugging features of the experimental system can be
extended and improved. Data probe operators which make graphs or provide
other useful kinds of information can be created. Recording probes which would
not affect program operation but which would gather statistical information
about a program's operation might be useful. A two-dimensional program
v displayed by the computer offers a new range of possibilities for methods of
examining and debugging computer procedures.

The method of executing graphical programs reinforces previously
suggested ways of building computer control elements [7]. Rather than having a
control element which operates sequentially, it might be useful to consider
making a control element based on an associative memory. A simplified model

or map of the parallel program would be contained in the special wmemory. The

- 100

T s om— v P T 4 G smr————— 0 e s e e

.control element could then search this memory in parallel to determine which

portions of the program were ready for activation and needed a processor
assigned. The assignment of processors could be done in parallel also..

| This investigation has uncovered very promising evidence that graphically
describing procedures to computers will ultimately become useful. Pictorial
Programs are a natural way to describe parallel operations. Much more work
by many people is neéded to overcome some of the problems standing in the way

of efficient, practical use of this method of programming.

101

TYPED COMMANDS

APPRNDIX A

SYSTEM CONTROL COMMANDS

The following commands are given to the system via the input typewriter.

Command

»P PIC IN WDW

»T PIC FROM WDW
»X NAME

»D PICL AS PICZ2

U PICL FROM PIC2
*W NAME

*G MODE

»S PIC

The underlined words are replaced by specific names.

Meaning

Put a picture in the named window. If
there is no picture with that name,
make one.

Take the picture from the named window.
Delete the thing named.
Define picture 1 to mean picture 2.

Undo the definition of picture 1 as
picture 2.

Make a drawn rectangle into a window
boundary and give it a name.

Change the grid feature. Modes are ON,
OFF, BIGGER(x2), sMALLER(x.5).

Start named picture running; i.e. con-
sider it as a program and execute 1it.

Continue executing the pictorial program
after an interruption.

102

LIGHT BUTTON COMMANDS

The remaining system cohtrol features are selected by light buttons
and foot pedals. Two pedals (or push buttons if desired) provide activation
signals. One signal is for moving along the tree of selection options below
énd then actually doing the selected action. The other button is a stop button
and returns cdntrol back down the tree. While the light buttons are displayed,
the picture on the screen vanishes. When a picture is seen the system 1s in
a particular sfate and the action pedal provides a signal causing the chosen

action to be performed.

a. ‘The action button selects functions — and then does the
selected function.

b. The return button moves bhack « .,

c. PIC indicates that the picture is seen on the display,

and the system is in the last selected function mode.

VALUE
SYNTAX

CORPNT | PIC +90
DEFNAME | -90
H-REFL
VIEW enm—— V-REFL
DRAW KNOB p—— DT
MOVE PTC CENTER
EXAMINE s DELETE X .5
DRWFCN DESIG . X .7
DECIR MKUSE X
RUNFCN X
' OUT-CPY
IN-CPY
NORMAL [PTC
RESET
IGNORE

VAIUE
START ——— T C
GO-ON

. 103

DESCRIPTION OF LIGHT BUTTON COMMANDS

A,

EXAMINE

Select debugging set of commands.

1.

DRWFCN

l.

Select

VALUE
Examine value of variables by making the value display on scope.
SYNTAX

Examine syntax of variables by making syntax description display
on scope.

CORENT

Connect a dashed line between a symbol terminal and the corres-
ponding point in the symbol definition picture.

DEFNAME

Show picture name and definition picture name of a symbol.

drawing set of commands.
VIEW

Select set of options for changing viewpoint of picture on the
scope. If pen not tracking and nothing seen, view changes are
centered in the designated window and occur to the designated
picture. If the pen is tracking, view changes are centered

on the pen and occur to the designated picture. If the pen 1is
not tracking and a symbol is seen, the change occurs only .to
that symbol regardless of what picture it is in. '

a. +90 — Rotate ninety degrees clockwise.

b. -90 — Rotate ninety degrees counterclockwise.

c. H-REFL — Reflect horizontally about -a vertical axis.

d. V-REFL — Reflect vertically about a horizontal axis.

e. KNOB — Obtain viewing transformation changes from knobs.
f. CENTER — Make spot under the pen be centered in the

designated window. Pen must be tracking.

g X .5 — Shrink by scale factor.

10k

h. X .77 — Shrink by scale factor.

i. x 1.4 — Expand by scale factor.
J- X 2 — Expand by scale factor.
2. DRAW

Draw a rubber band line from initial pen location until ter-
minated. If terminated on a point and syntax is OK, merge

points.

3. MOVE
Move whatever is seen by pen when the action signal (from pedal)
is given. :

L, DELETE
~Dele£e whatever is seen by the pen.

5. DESIG
Designate a picture and a wihdow as the current ones. Picture
parts then added will belong to the designated picture and the

transformation associated with the designated window will be
used.

6. MKUSE

Make a copy of the symbol seen, or if no symbol is seen mdke a
new symbol (use) of the picture last named.

C. DECIR

Select the declaration set of commands.

1. OUT-CPFY
Declare a point as an output terminal for a symbol. Copy its
syntax properties from the corresponding point in the symbol
definition picture. Alternatively, copy its syntax properties
from a list of allowable data types.

2. IN-CPY

Declare a point as an input terminal for aAsymbol. Copy its
syntax properties as above.

3. NORMAL

Select the normal data-retaining option for an input terminal.

1105

L. RESET
Select the data reset-to-undefined option for an input terminal.
5.. IGNORE

Select the ignore-an-undefined-input option for an input
terminal. '

D. RUNFCN
‘Select the run-a-program set of commands.
1. VALUE
Type in a variable value. Upon starting tracking the vaiue

will appear just above the pen tracking cross. Assign the
value to a variable by terminating tracking while seeing a

point.
2. START”
 Start a pictorial program running by pointing to its name on
the scope.
3. GO-0ON

Continue on with graphical program execution after an inter-
ruption.

Note: There are also typed commands to accomplish the START and GO-ON
functions.

106

APPENDIX B

EXPERIMENTAL SYSTEM FRIMITIVE OPERATIONS
(As of November 1965)

The 1list which follows contains the primitive operations included in
the ekperimental system up through November, 1965. This list is not complete
since new primitives may easlly be added and will be as the need arises. The
symbols used to represent primitive operations are not fixed. A user may
define any symbol he wishes and then make it represent any one of the prim-

itives. Several different symbols may each be defined as the same primitive.

One can then use whichever symbol fits best into the graphical’context each
time that operation is needed. The only restriction on symbols is that they
have at least as many input terminals as the primitive operation expects.
Extra input terminals are merely ignored. |

The primitive operations are grouped into classes. The listing of
operations provides the class, name, inputs, outputs, and a short description
for the operation of each primitive. Each operation has optional flow input
and output terminals. These optional terminals are not included in the listing
descriptions. All the primitive operation written'names start with "PR" to
help avoid confusion with other names one might have present in the system.
In describiﬁg the inputs and outputs of the operators, a number and a letter
are used. The number indicates how many terminals of a particular kind each
operator has, and the letter indicates the type of variable expected. A "?"

in place of the number means that any number of terminals of that kind are

107

T, RN W R g e - o oW BTt a e mea s - L R I . [S——

allowable.

The letter designations of data types are as follows: A = any,

B = boolean, C = cable, F = fraction, I = integer, N = numerical, and

FL = flow.

LIST OF FRIMITIVE OPERATICNS

Class and Name Inputs Outputs

Description of Operation

Arithmetic

PRADD 2N 1N
PRSUB '

PRMUL,

PRDIV

Boolean
PRITA 2B 1B

FRUNA
PRDSA

Test

PREGQ, 2A 1B
PRUNEQ

PRGRTR 2N 1B
PRIESS

Control

PRPASS 1A 1A
PRSTOP 1B

PRFLSW
(flow switch)

1T or B 7FL

108

Self explanatory. The operations check
for data type (integer, floating,
ete.) and act accordingly.

Intersect, unite, and distinguish
(exclusive or) operations.

Tests two variables of any kind.
Output is TRUE if condition is met.

Tests numerical variables as above.

Any variable is either passed through
the operator or blocked. For PASS,
TRUE control input means pass, FALSE
means block. STOP is reversed from
this.

All flow outputs are undefined
except the n'th. n = integer input
or O or 1 if input boolean.

Class and Name Inputs Outputs Description of Operation
Data Source
PRTYPIN None 1A Makes variable from typed input.
Keyboard is used at run time.
PRCONT 1T 1A The contents of the memory location

(contents) 1A specified by the integer input are
made into a variable of the same
kind as the any-input. The actual
value of the any-input is not used.

. PRTIME None 11 Makes current system internal time
into an integer output. Internal
time is used to simulate parallel-
ism.

PRUSAD Wone 11 Graphic primitive. Provides inter-
(use address) nal reference integer address of the
symbol which caused activation of
the picture containing a use of this
primitive.
Data Sink
PRTYPE 1A None Types out variable at run-time on
printer.
PRSEE 1A ane Shows variable on the screen as text
in the operator symbol.
PRCINS 1A None Stores the variable bit pattern in
(core insert) 1T the core address specified by the
integer input. '

Miscellaneous

PRSUBR 3I 21 General-purpose subroutine call. One
1B

integer input is the absolute address
of the routine to be called. Two
integer inputs and outputs are the
two halves of the accumulator. The
boolean output indicates whether a
return to the calling address plus
one or plus two was made.

Class and Name Inputs Outputs Description of Operation

Miscellaneous
(Continued)
PRMODU 1T None Graphic primitive. Integer is
Ly address (perhaps from FRUSAD) of
& symbol to be displayed. The
fraction inputs are a Ax, Ay, AG,
and size change to be applied.
PRTRAP 1A None When activated, this operator stops
interpreter action so that the
graphical program mey be modified.
PRGRACT 11 Every other primitive has a number.
(General pur- 748 7A The integer input controls which
pose action) primitive this operation really is.

The integer input is then removed
and the operation done to the other
inputs present.

Cable Class

PRCABL 748 1C Gathers up any number of any kind of
input into a cable bundle. This
cable may then be treated as a
single variable; i.e. a vector.

PRUNCABL 1C 7A Unties the cable and fans out the
individual outputs.

Agssociative (Class

FRFIND : The whole operation of this class is
PRSET too complex for concise description.
PRERASE

PRTYPEQOUT

110

APPENDIX C

'THE CORAT, TANGUAGE AND DATA STRUCTURE

The term "CCORAL" stands for Class Oriented Ring Associative Languége.
The acronym is inexact as CORAL is really a service system consisting of a
basic data structure form, a number of action subroutines, and a macfo lan-
guage for programming actions upon the data structure. CORAL was developed
at the M. I. T. Lincoln Iaboratory for the TX-2 Computer dﬁring 1964. The
basic ideas of the data structure and language are not new and are applicable
to any computer [1, 26]. However, the particular details of the structure
énd language are intimately related to the peculiarities of$TX-2, its macro

assembler "Mark IV", and the character set of the Lincoln Writer keyboards.

CORAL DATA STRUCTURE

The CORAL data structure consists of table-like blocks of list elements.
CORAL list ties are always formed into rings. Each element in a ring requires
one 36-bit word and contains a 17-bit pointer to the next element. One element
of the ring is the start or head and all the other elements are subordinate
to it. The ring start element contains, besides its forward pointer, 9 bits
of data and a 9-bit identification code (-0) which marks it as a start point.
Every other element of a ring has a second 17-bit pointer which either points
to the ring start element or is used as a backward pointer. One bit marks

which type of pointer is being used and rings are built with back pointers and

111

start pointers alternating. Back pointers point to the closest previous
element with a back pointer so that.they form a complete ring. Alternation
of the less useful pointer types retains the advantages of both pointers in
half the space (one word per element) and with only a small loss of time.
(Figure 1 illustrates the basic ring structure.)
BLOCKS

-A block of elements collects many ties together and thus allows the
» multi-dimensibnal associations required for graphical data structures. Although
it is sufficient to use abt most two ring elements per block, more are often
used for increased efficiency. A Plock is formed from a sequence of reg-
isters of any length and contains a blockhéad identifier at the top, a group
of ring elements and any number of data registers. (Figure 2 illustrates an
example of a block.) Blocks are used to represent items or entities and the
rings form associations between blocks. Thus, an element may be reached by
moving up or down in a block rather than going around its ring. To find out
what group the element bélongs to it is necessary to find the head element of
‘its ring and this is made efficient through the use of the start ties. If it
is necessary to delete an element or insert a new element.before it, the back
ties are used t§ find the previous element. Thus, the full set of ties are
necessary in the list elements if deletion, insertion, and identifying the
elements' group are to be accomplished efficiently.
CORAL PROGRAMMING IANGUAGE

The CORAL langﬁage provides a means of programming actions which will
operate on a CORAL data structure. A CORAL program consists of a combination

of operators and named variables of type "POINTER". A pointer has as its

112

55E-£0 © 3YNL1ONH¥LS LNIW3T3 ONIY OIsve |} 914

311 Movd 311 Mov8 311 MovH

\ \/ \]
QqdvMd04d

113

SIN3IW3T3 ONIY

s e S S S TS

>
INIW3T3 11V1S ONIY

SY3ILNIOd 1YV1S

LIST LENGTH

BLOCK—»{ 8

LENGTH

’/BLOCK TYPE

BLOCK HEADER
- >
- >
+RING ELEMENTS
- >
- >
J
DATA
DATA
DATA

FIG 2 EXAMPLE OF BLOCK FORM

C23-357

114

value an integer address of a data structure register. Some operators will
change the value of the pointer variables. For example, an operation for
moving down two registers in a block would simply add two tovthe value of a
pointer, thus making it point to a new location in the block.

Other operations will not change the value of the pointers, but will
change the data structure pieces which are pointed to. Consider the opera-
tion of‘inSerting a new tie element into a ring. This operation will have two
arguments; the pointer to the element to be inserted, and a pointer to a
reference element in an already existing ring. At the completion of the
operation the pointers will be unchanged but the data structure will be changed
since ihe two eleﬁents are now ring neighbors. It is useful to think of the
pointers as named fingers keeping track of elements in the data structure.
CORAL contains operators which move the fingers to new places in the struc-
ture and aiso operators which make the fingers manipulate whatever part of
the stfucture they are grasping.

The various CORAL operators are used with pointer parameters and also
with numericél parameters. The operator symbols are compound characters made
from Lincoln Writer symbols. The list at the end of this appendix contains
the principal operators and a description of how they work. The computer
accumulator is used as an inter-operator communication register. Just as the
result of an X + Y operation is normally available in the accumulator, so

- the result of a pointer moving operation is also available. CORAL operators
may thus be nested in an almost érithmetic-like fashion. An operator parameter
may be a named’pointer variable, or it may be another operator expression. Inv

this latter case the value resulting from the first operation on a pointer

115

is left in the accumulator and used directly as the input value for the
second operation. Nesting to any depth may be accomplished.
CORAL OPERATORS

The list describing the principal CCORAL operators uses a number of

standard parameter symbols as follows:

Parameter Symbol MEaning
| A Computer Accumulator
P Pointer
Q Reference Pointer
"N Numerical Value
S} : i Pointer
R Control Transfer ILabel
B Numerical Value of Block Type

In a CCRAL program actual named pointers or expressions will appear in place
of the parameter symbols above. The appearance of "S" in macros containing
", 8" will cause A to be stored in pointer S at the end of the mécro. " R"
at the end of a macro will cause a transfer of control to statement R. Omis-

sion of these parameters causes their actions to be omitted.

116

CORAL OPERATOR LISTING

MOVEMENT

These macros enable one to move from one part of the list structure to
anofher. P points to a starting place which must be a tie register for left-
right mévement; a tie register or block head for up-down movement, except
where indicated. N indicates how far to move. After any of the macros has

been executed the accumulator points to the resulting location in the data

structure.
Symbol Format ‘ Description
A - PAN-S-R Go up N memory locations from P.
P may point to any register of block.
If N is negative, goes down.
+ P +N—>S'"R Go down N memory locat::ons from P.
P may point to any register of block.
If N is negative, goes up.
.T_ ﬁFN*S'R\ Go to bottom.of block P,.then.go up N-1
: : memory locations. If N is omitted goes
to top. If N is O, ends up at register
below bottom. If N is negative, goes
down from bottom to outside of block.
'T \ pTNasrR Go to top of block P, then go down N

memory locations. If N is negative,
goes up above block, normally undesir-
able. ‘

117

Symbol Format Description

} P3N->S- R Go right from P around ring N places.
If N is negative, does nothing.

¢ P{N->ST R Go left from P around ring N places.
If N is negative, does nothing.

E3 PIN-S" R Go to ring start of P, then right N
places around ring. If N is negative,
stays at ring start.

¥ PEN->SR Go to ring start of P, then left N
places around ring. If N is negative,
stays at ring start.

[QI ‘ P[Q]N-S"'R Go down to 1\I+lJGh data register of block
P.

118

STRUCTURE CHANGING

These macros enable one to build, delete, and arrange list structure
elements. After any of the macros has been executed, the accumulator points

to some part of the list structure Just referenced.

Symbol - Format Description
(]1) X(IDL"S"R Make master master block at location
' determined by X for list structure L
long.

A points to header of block.

e TPLxLL-S"R Make master block for block-type TP
with length L and list length (non-data
length) LL.

A points to master block.

® @VYPAL-»S"R Make block of type TP and length L.
If L is omitted, the length specified
in the master block for type TP is used.
A points to first tie register of block.

Put P right of Q. If P points to a ring
start, error message results.

For this and the operators listed below
A has pointer P.

) POQ~+S* R

Put P left of Q. If P points to a ring
start, error message results.

@ P@Q-+S*R

PEQ=S* R Move ring P to right of Q. P must point
to a ring start which thereby becomes
empty after its ring elements are moved.

)

Bl

P@Q-»>SwR Move ring P to left of Q. P must point
to a ring start which thereby becomes
empty after its ring elements are moved.

® P@->S* R Take P out of ring it is in, making it
an empty tie register (pointing to itself).
If P points to a ring start, does nothing.

119

Smbol Format Des criEt jon

® P&®->S* R Delete ring P. 1If P points to empty
’ tie register, does nothing. If P

points to a ring element, takes it.
Then checks to determine if the Dblock
containing the ring start (of this
ring element) thereby has all of its
tie registers empty; if so, return
block to free storage, otherwise, do
nothing more. If P points to a ring
start, does ® to each block containing
a ring element of the ring start.
A has pointer P.

& PBs R Delete Block P. This macro does ® to
, each tie register of block P and then
returns block P to free storage.
A has pointer P.

120

TESTS

These macros are used for branching by "asking a question". If
"answer" is yes, go to JYES; if "answer" is no, go to JNO. If JYES and JNO

are expressions, do them as appropriate.

Symbol Format Description
H PE>JYES | JNO-R P pointing to ring start ? NOTE: An
empty tie register is considered a ring
start. '

A has pointer P.

P pointing to block of type TP ?
. E}T] S|JNO"R
e PETP2JYE I A has pointer P.

E PEPJYES | JNOwR P pointing to empty tie register ? (i.e.,
tie register pointing to itself)
A has pointer P.

DATA

These macros retrieve data into the accumulator.

Symbol Format Description
@ Pli_(]N +5" R Ioad the contents of the register whose

address is N plus the pointer P into A.

0 ‘P@*S'R Get length (?f block containing P.
A has numerical answer.

Get list length (non-data length) of
@ P[&-»SfR » block containing P.
A has numerical answer.

m PE]-S"R Get type number of block containing P.
: A has numerical answer.

121

GENERATORS

These macros cause an action to be performed for each ring element

in a ring.

Symbol Format Description
|:>] ' PE'ACTIONAPD L-+S*" R Go right around ring P doing ACTION for

each element except element P. Save
pointer to each element at S before
doing ACTION. Usually P points to ring
start. "Current element" may be deleted
by ACTION without hurting go-around.

If an element is put right of current
element by ACTION, it is not visited
next. For recursive go-around include
parameter PDL which specifies a push-
list.

Fach time ACTION is called, A points

to current element. At the end, A

has the original pointer P.

PIACTIONAPDL-'S"R Go right insertable around ring P.

Same as above, except that "current
element" must not be deleted by ACTION
and, if an element is put right of
current element by ACTION, it is
visited next.

E] PIACTIONAPDL-»S=R Go left around ring P.
Same as '
--------------------- except goes
left around
PK]|ACTIONAPDL-»S"R Go left insertable ring.

around ring P.

122

CCRAL PROGRAM EXAMPLE

The following two statement lines are typical of CORAL programs.

(@BLKI-NEWBLK)®((OLDBLKY3) 4 (oLDBLKKS))

((F) NAMRING)[ED ((OLDBLKYI)PJSUBRI=LABEL)

The main operator in the first line is@ (put right). The element to be
inserted is the first tie register of a newly created block of type BIKL.
BIK1 is a symbolic name for some integer type number. The pointer named
NEWBIK i1s assigned the address of the inserted ring element. The new tie
element will be inserted next to an element determined by what follows the
© operator. To find the reference element, the program will move the pointer
OLDBIK down three registers and then left (backwards) around that ring. The
nuﬁber of steps moved is determined by the contents of the data structure
register found by moving the pointer OLDBIK down five. The accumulator's
.contents are identical with those of NEWBLK after the statement has been
executed.

The second line takes the accumulator pointer to the newly inserted
tie element, moves to its ring start, then to the top of the block containing
the ring start, and down a distance equal to NAMRING. If the resulting tie
register is not empty, control goes on to the next line. If the register is
empty then the subroutine SUBRL is performed for each member of the ring found
by moving the pointer OLDBLK down one. After all the members of the ring have

been treated, control transfers to LABEL]L.

123

10.

11.

12.

13.

BIBLIOGRAPHY

Comfort, W. T. "Multiword List Items," Comm. of the ACM, Vol. 7,
No. 6, pp. 357-362, June 196L.

Conway, M. "A Multiprocessor System Design," AFIPS FJCC Conference
Proceedings, Vol. 24, pp. 139-146, Spartan Books, Baltimore, 1963.

Davis, M. R., and T. O. Ellis. "The RAND Tablet: A Man-Machine
Communication Device,'" AFIPS FJCC Conference Proceedings, Vol. 26,
pp. 325-331, Spartan Books, Baltimore, 196.4.

Dennis, J. B. "Segmentation and the Design of Multiprogrammed Com-
puter Systems," Journal of the ACM, Vol. 12, No. 4, pp. 589-602,
October 1965.

Feldman, J. A. "A Formal Semantics for Computer Oriented Languages,"
PhD Thesis, Carnegie Institute of Technology, June 196L.

Feldman, J. A. "Aspects of Associative Processing," M.I.T., Lincoln
Laboratory, Technical Note 1965-13, April 1965.

Fitzwater, D. R., and E. J. Schweppe. "Consequent Procedures in Con-
ventional Computers," AFIPS FJCC Conference Proceedings, Vol. 26,
pp. U65-476, Spartan Books, Baltimore, 196k.

Haibt, L. A. "A Program to Draw Multi-Level Flow Charts," IBM Research
Report RC-89, April 1, 1959.

Heistand, R. E. "An Executive System Implemented as a Finite State
Automaton," Communications of the ACM, Vol. 7, pp. 669-677, November
196k.

Heller, J. '"Sequencing Aspects of Multiprogramming,"
ACM, Vol. 8, pp. 426-439, July 1961.

Journal of the .

Johnson, T. "Sketchpad III, 3-D Graphical Communication with a Digital
Computer," MS Thesis, Dept. of Mechanical Eng., Massachusetts Instltute
of Technology, June 1963.

Kelley, J. L., C. Lochbaum, and V. A. Vyssotsky. "A Block Diagram
Compiler," Bell Systems Technical Journal, Vol. 40, pp. 669-676, May 1961.

Kirsch, R. A. '"Computer Interpretation of English Text and Picture

’ Ehiterns," IEEE Transactions on Electronic Computers, Vol. EC-13,

Pp- 363 376, August 1964,

124

1L, Knowlton, K. C. "A Computer Technique for Producing Animated
Movies," AFIPS SJCC Conference Proceedings, Vol. 25, pp. 67-87,
Spartan Books, Baltimore, 196kL.

15. Krakauer, L. J. "Syntax and Display of Printed Format Mathematical
- Formulas," MS Thesis, Massachusetts Institute of Technology, 1964.

16. Krider, Lee. "A Flow Analysis Algorithm," Journal of the ACM,
Vol. 11, No. 4, pp. 429-436, October 196kL.

17. lass, S. E; "PERT Time Calculations Without Topological Ordering,”
Communications of the ACM, Vol. 8, No. 3, March 1965.

18. - Tang, C. A., R. B. Polansky, and D. T. Ross. "Some Experiments With
an Algorithmic Graphical Language," Massachusetts Institute of Tech-
nology ESL-TM-220, August 1965.

19. Iing, Tse-Sheng (Marvin). "The Logical and Analytical Structure of
the Computer-Aided Design Process as Applied to a Class of Mechanical
Design Problems,” PhD Thesis, University of Michigan, October 1962.

20. Martin, William A. "Syntax and Display of Mathematical Expressions,"”
Massachusetts Institute of Technology, Project MAC Memo MAC-M-257,
July 29, 1965.

21. Narasimhan, R. "Iabeling Schemata and Syntatic Descriptions of Pic-
tures," Information and Control, Vol. 7, pp. 15L-179, 196k.

22. Narasimhan, R. "Syntax Directed Interpretation of Classes of Pictures,"
ACM Workshop on Programming Languages, San Dimos, Calif., August 1965.

23. Roberts, L. G. "Graphical Communication and Control Languages,"
Proceedings of the Second Congress on Information System Sciences,
Pp. 211-217, Spartan Books, Baltimore, 1964.

2l Roberts, L. G. "Ma.chine Perception of Three-Dimensional Solids,"
PhD Thesis, Massachusetts Institute of Technology, May 1963.

25. Roberts, L. G. "A Graphical Service System With Variable Syntax,"
ACM Programming Languages Conference, San Demos, California, August 1965.

26. Ross, D. T., and C. G. Feldman. '"Verbal and Graphical Language for
the AED System; A Progress Report," Massachusetts Institute of Tech-
nology, Project MAC Technical Report No. L4, May 196kL.

27. Stockham; T. G. Jr. "Some Methods of Graphical Debugging," IBM

Symposium on Man-Machine Communication, Yorktown Heights, New York,

May 1965.

125

28.

29.

30.

31.

32.

33.

Sutherland, I. E. '"Sketchpad: A Man-Machine Graphical Communication
System," M. I. T., Lincoln Laboratory Technical Report No. 296,
January 1963.

‘Teager, W. M. "Real Time Man-Machine Communication With Graphical

Ianguages," First Congress on the Information System Sciences,
ESD-TDR 63-47L4-5, January 196kL.

Ulrich, E. G. "Time-Sequenced Logical Simulation Based on Circuit
Delays and Selective Tracing of Active Network Paths," Proceedings
of 20th National Conference of the ACM, Cleveland, Chio, p. 437,
August 1965.

Westerfeld, E. C. "Flowchart Compiler Using Teager Board Input,"
MS Thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering, June 1965.

AF DOC, AFCRL-65-736, Prepared by Adams Associates under contract AF
19(628)-453.

Five Papers from the 1964 Fall Joint Computer Conference:

Milen, T. R., and J. C. Foote. "Input/Output Software Capability for
a Man-Machine Communication and Image Processing System," AFIPS FJCC

- "Research on Advanced Dynamic Attribute Extraction,'

Conference Proceedings, Vol. 26, p. 387, Spartan Books, Baltimore, 196k.

Cole, M. P., et al. "Operational Software in a Disc Oriented System,"
AFIPS FJCC Conference Proceedings, Vol. 26, p. 351, Spartan Books,
Baltimore, 196L.

Hafgreaves, B., et al. '"Image Processing Hardware for a Man-Machine
Graphic Communication System," AFIPS FJCC Conference Proceedings, Vol.
p. 363, Spartan Bocks, Baltimore, 196L.

Jacks, E. L. "A Laboratory for the Study of Graphical Man-Machine
Communication," AFIPS FJCC Conference Proceedings, Vol. 26, p. 343,
Spartan Books, Baltimore, 196h4.

Krull, F. N., and J. E. Foote. "A Line Scanning System Controlled
from an On-Line Console," AFIPS FJCC Conference Proceedings, Vol. 26,
p. 397, Spartan Books, Baltimore, 1964.

126

26,

BIOGRAPHICAL NOTE

William Robert Sutherland was born on May 10, 1936 in Hastings,
Nebraska. After an early childhood near Chicago, he moved to Scarsdale,
New York where he graduated from the Scarsdale High School. Mr. Sutherland
attended Rensselaer Polytechnic Institute, Troy, New York under the NROTC
Hblloway plan and received his Bachelor of Electrical Engineering Qggree in
June 1957. While at Rensselaer he was a joint winner of the Ricketts prize
in 1957. Mr. Sutherland entered the Navy in June 1957 and completed flight
training as a Naval Aviator in January 1959. While on duty with a carrier
anti-submarine aircraft squadron in Norfolk, Virginia, he was awarded the
Legion of Merit. Upon release from the Navy in July of 1962, he entered
M. I. T. as a full time graduate student under a National Science Foundation
fellowship. He received the Master of Science Degree in Electrical Engin-
eering in June 1963. During his two years as a NSF fellow Mr. Sutherland
was associated with ﬁhe Research Iaboratory of Electronices at M. I. T. In
June 1964 he became associated with the M. I. T. Lincoln Laboratory as &

Staff Associate. He is a member of Tau Beta Pi, Eta Kappa Nu, and Sigma Xi.

127

